scholarly journals Prediction of Metabolic Syndrome in a Mexican Population Applying Machine Learning Algorithms

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 581
Author(s):  
Guadalupe Obdulia Gutiérrez-Esparza ◽  
Oscar Infante Vázquez ◽  
Maite Vallejo ◽  
José Hernández-Torruco

Metabolic syndrome is a health condition that increases the risk of heart diseases, diabetes, and stroke. The prognostic variables that identify this syndrome have already been defined by the World Health Organization (WHO), the National Cholesterol Education Program Third Adult Treatment Panel (ATP III) as well as by the International Diabetes Federation. According to these guides, there is some symmetry among anthropometric prognostic variables to classify abdominal obesity in people with metabolic syndrome. However, some appear to be more sensitive than others, nevertheless, these proposed definitions have failed to appropriately classify a specific population or ethnic group. In this work, we used the ATP III criteria as the framework with the purpose to rank the health parameters (clinical and anthropometric measurements, lifestyle data, and blood tests) from a data set of 2942 participants of Mexico City Tlalpan 2020 cohort, applying machine learning algorithms. We aimed to find the most appropriate prognostic variables to classify Mexicans with metabolic syndrome. The criteria of sensitivity, specificity, and balanced accuracy were used for validation. The ATP III using Waist-to-Height-Ratio (WHtR) as an anthropometric index for the diagnosis of abdominal obesity achieved better performance in classification than waist or body mass index. Further work is needed to assess its precision as a classification tool for Metabolic Syndrome in a Mexican population.

Author(s):  
Jahnavi Yeturu ◽  
Poongothai Elango ◽  
S. P. Raja ◽  
P. Nagendra Kumar

Genetics is the clinical review of congenital mutation, where the principal advantage of analyzing genetic mutation of humans is the exploration, analysis, interpretation and description of the genetic transmitted and inherited effect of several diseases such as cancer, diabetes and heart diseases. Cancer is the most troublesome and disordered affliction as the proportion of cancer sufferers is growing massively. Identification and discrimination of the mutations that impart to the enlargement of tumor from the unbiased mutations is difficult, as majority tumors of cancer are able to exercise genetic mutations. The genetic mutations are systematized and categorized to sort the cancer by way of medical observations and considering clinical studies. At the present time, genetic mutations are being annotated and these interpretations are being accomplished either manually or using the existing primary algorithms. Evaluation and classification of each and every individual genetic mutation was basically predicated on evidence from documented content built on medical literature. Consequently, as a means to build genetic mutations, basically, depending on the clinical evidences persists a challenging task. There exist various algorithms such as one hot encoding technique is used to derive features from genes and their variations, TF-IDF is used to extract features from the clinical text data. In order to increase the accuracy of the classification, machine learning algorithms such as support vector machine, logistic regression, Naive Bayes, etc., are experimented. A stacking model classifier has been developed to increase the accuracy. The proposed stacking model classifier has obtained the log loss 0.8436 and 0.8572 for cross-validation data set and test data set, respectively. By the experimentation, it has been proved that the proposed stacking model classifier outperforms the existing algorithms in terms of log loss. Basically, minimum log loss refers to the efficient model. Here the log loss has been reduced to less than 1 by using the proposed stacking model classifier. The performance of these algorithms can be gauged on the basis of the various measures like multi-class log loss.


Author(s):  
Aadar Pandita

Heart diseases have been the primary reason for death all over the world. Majority of the deaths related to cardiovascular problems are caused by heart attacks and strokes. The World Health Organization (WHO) indicates that an approximate 17.9 million people die due to such diseases every year. Therefore, it is essential that we find methods to ensure the minimization of these numbers. In order to minimize the detrimental effects of heart diseases, we must try to predict its presence at earlier stages. Machine Learning algorithms can help us effectively predict such results with a high degree of accuracy which can in turn help doctors and patients detect the onset of such diseases and reduce their impact or prevent them from occurring. Our objective is to create a system that is able to accurately determine the presence of heart disease in a time and cost efficient manner.


Road crashes are the most common forms of accidents and deaths worldwide, and the significant reasons for these accidents are usually drunken, drowsiness and reckless behaviour of the driver. According to the World Health Organization, road traffic injuries have risen to 1.25 billion worldwide, which makes driver drowsiness detection a major potential area to avert numerous sleep-induced road accidents. This project proposes an idea to detect drowsiness using machine learning algorithms, hence alarming the driver in real-time to prevent a collision. The model uses the Haar Cascade algorithm, along with the OpenCV library to monitor the real-time video of the driver and to detect the eyes of the driver. The system uses the Eye Aspect Ratio (EAR) concept to determine if the eyes are open or closed. We also feed a data-set file consisting of the facial features data-points to train the machine learning algorithm. The model inspects each frame of the video, which helps to recognize the state of the driver. Furthermore, a Raspberry Pi single-board computer, combined with a camera module and an alarm system, facilitates the project to emulate a compact drowsiness detection system suitable for different automobiles.


2020 ◽  
Author(s):  
Siva Kumar Jonnavithula ◽  
Abhilash Kumar Jha ◽  
Modepalli Kavitha ◽  
Singaraju Srinivasulu

World Health Organization’s (WHO) report 2018, on diabetes has reported that the number of diabetic cases has increased from one hundred eight million to four hundred twenty-two million from the year 1980. The fact sheet shows that there is a major increase in diabetic cases from 4.7% to 8.5% among adults (18 years of age). Major health hazards caused due to diabetes include kidney function failure, heart disease, blindness, stroke, and lower limb dismembering. This article applies supervised machine learning algorithms on the Pima Indian Diabetic dataset to explore various patterns of risks involved using predictive models. Predictive model construction is based upon supervised machine learning algorithms: Naïve Bayes, Decision Tree, Random Forest, Gradient Boosted Tree, and Tree Ensemble. Further, the analytical patterns about these predictive models have been presented based on various performance parameters which include accuracy, precision, recall, and F-measure.


Author(s):  
Jakub Gęca

The consequences of failures and unscheduled maintenance are the reasons why engineers have been trying to increase the reliability of industrial equipment for years. In modern solutions, predictive maintenance is a frequently used method. It allows to forecast failures and alert about their possibility. This paper presents a summary of the machine learning algorithms that can be used in predictive maintenance and comparison of their performance. The analysis was made on the basis of data set from Microsoft Azure AI Gallery. The paper presents a comprehensive approach to the issue including feature engineering, preprocessing, dimensionality reduction techniques, as well as tuning of model parameters in order to obtain the highest possible performance. The conducted research allowed to conclude that in the analysed case , the best algorithm achieved 99.92% accuracy out of over 122 thousand test data records. In conclusion, predictive maintenance based on machine learning represents the future of machine reliability in industry.


2020 ◽  
Vol 9 (3) ◽  
pp. 34
Author(s):  
Giovanna Sannino ◽  
Ivanoe De Falco ◽  
Giuseppe De Pietro

One of the most important physiological parameters of the cardiovascular circulatory system is Blood Pressure. Several diseases are related to long-term abnormal blood pressure, i.e., hypertension; therefore, the early detection and assessment of this condition are crucial. The identification of hypertension, and, even more the evaluation of its risk stratification, by using wearable monitoring devices are now more realistic thanks to the advancements in Internet of Things, the improvements of digital sensors that are becoming more and more miniaturized, and the development of new signal processing and machine learning algorithms. In this scenario, a suitable biomedical signal is represented by the PhotoPlethysmoGraphy (PPG) signal. It can be acquired by using a simple, cheap, and wearable device, and can be used to evaluate several aspects of the cardiovascular system, e.g., the detection of abnormal heart rate, respiration rate, blood pressure, oxygen saturation, and so on. In this paper, we take into account the Cuff-Less Blood Pressure Estimation Data Set that contains, among others, PPG signals coming from a set of subjects, as well as the Blood Pressure values of the latter that is the hypertension level. Our aim is to investigate whether or not machine learning methods applied to these PPG signals can provide better results for the non-invasive classification and evaluation of subjects’ hypertension levels. To this aim, we have availed ourselves of a wide set of machine learning algorithms, based on different learning mechanisms, and have compared their results in terms of the effectiveness of the classification obtained.


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 104 ◽  
Author(s):  
Ahmed ◽  
Yigit ◽  
Isik ◽  
Alpkocak

Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document