scholarly journals Prediction of Heart Disease using Machine Learning Algorithms

Author(s):  
Aadar Pandita

Heart diseases have been the primary reason for death all over the world. Majority of the deaths related to cardiovascular problems are caused by heart attacks and strokes. The World Health Organization (WHO) indicates that an approximate 17.9 million people die due to such diseases every year. Therefore, it is essential that we find methods to ensure the minimization of these numbers. In order to minimize the detrimental effects of heart diseases, we must try to predict its presence at earlier stages. Machine Learning algorithms can help us effectively predict such results with a high degree of accuracy which can in turn help doctors and patients detect the onset of such diseases and reduce their impact or prevent them from occurring. Our objective is to create a system that is able to accurately determine the presence of heart disease in a time and cost efficient manner.

2022 ◽  
pp. 383-393
Author(s):  
Lokesh M. Giripunje ◽  
Tejas Prashant Sonar ◽  
Rohit Shivaji Mali ◽  
Jayant C. Modhave ◽  
Mahesh B. Gaikwad

Risk because of heart disease is increasing throughout the world. According to the World Health Organization report, the number of deaths because of heart disease is drastically increasing as compared to other diseases. Multiple factors are responsible for causing heart-related issues. Many approaches were suggested for prediction of heart disease, but none of them were satisfactory in clinical terms. Heart disease therapies and operations available are so costly, and following treatment, heart disease is also costly. This chapter provides a comprehensive survey of existing machine learning algorithms and presents comparison in terms of accuracy, and the authors have found that the random forest classifier is the most accurate model; hence, they are using random forest for further processes. Deployment of machine learning model using web application was done with the help of flask, HTML, GitHub, and Heroku servers. Webpages take input attributes from the users and gives the output regarding the patient heart condition with accuracy of having coronary heart disease in the next 10 years.


Author(s):  
Aadar Pandita

: Heart disease has been one of the ruling causes for death for quite some time now. About 31% of all deaths every year in the world take place as a result of cardiovascular diseases [1]. A majority of the patients remain uninformed of their symptoms until quite late while others find it difficult to minimise the effects of risk factors that cause heart diseases. Machine Learning Algorithms have been quite efficacious in producing results with a high level of correctness thereby preventing the onset of heart diseases in many patients and reducing the impact in the ones that are already affected by such diseases. It has helped medical researchers and doctors all over the world in recognising patterns in the patients resulting in early detections of heart diseases.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 581
Author(s):  
Guadalupe Obdulia Gutiérrez-Esparza ◽  
Oscar Infante Vázquez ◽  
Maite Vallejo ◽  
José Hernández-Torruco

Metabolic syndrome is a health condition that increases the risk of heart diseases, diabetes, and stroke. The prognostic variables that identify this syndrome have already been defined by the World Health Organization (WHO), the National Cholesterol Education Program Third Adult Treatment Panel (ATP III) as well as by the International Diabetes Federation. According to these guides, there is some symmetry among anthropometric prognostic variables to classify abdominal obesity in people with metabolic syndrome. However, some appear to be more sensitive than others, nevertheless, these proposed definitions have failed to appropriately classify a specific population or ethnic group. In this work, we used the ATP III criteria as the framework with the purpose to rank the health parameters (clinical and anthropometric measurements, lifestyle data, and blood tests) from a data set of 2942 participants of Mexico City Tlalpan 2020 cohort, applying machine learning algorithms. We aimed to find the most appropriate prognostic variables to classify Mexicans with metabolic syndrome. The criteria of sensitivity, specificity, and balanced accuracy were used for validation. The ATP III using Waist-to-Height-Ratio (WHtR) as an anthropometric index for the diagnosis of abdominal obesity achieved better performance in classification than waist or body mass index. Further work is needed to assess its precision as a classification tool for Metabolic Syndrome in a Mexican population.


Author(s):  
Baban. U. Rindhe ◽  
Nikita Ahire ◽  
Rupali Patil ◽  
Shweta Gagare ◽  
Manisha Darade

Heart-related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need fora reliable, accurate, and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart-related diseases. Heart is the next major organ comparing to the brain which has more priority in the Human body. It pumps the blood and supplies it to all organs of the whole body. Prediction of occurrences of heart diseases in the medical field is significant work. Data analytics is useful for prediction from more information and it helps the medical center to predict various diseases. A huge amount of patient-related data is maintained on monthly basis. The stored data can be useful for the source of predicting the occurrence of future diseases. Some of the data mining and machine learning techniques are used to predict heart diseases, such as Artificial Neural Network (ANN), Random Forest,and Support Vector Machine (SVM).Prediction and diagnosingof heart disease become a challenging factor faced by doctors and hospitals both in India and abroad. To reduce the large scale of deaths from heart diseases, a quick and efficient detection technique is to be discovered. Data mining techniques and machine learning algorithms play a very important role in this area. The researchers accelerating their research works to develop software with thehelp of machine learning algorithms which can help doctors to decide both prediction and diagnosing of heart disease. The main objective of this research project is to predict the heart disease of a patient using machine learning algorithms.


2021 ◽  
Author(s):  
Meng Ji ◽  
Pierrette Bouillon

BACKGROUND Linguistic accessibility has important impact on the reception and utilization of translated health resources among multicultural and multilingual populations. Linguistic understandability of health translation has been under-studied. OBJECTIVE Our study aimed to develop novel machine learning models for the study of the linguistic accessibility of health translations comparing Chinese translations of the World Health Organization health materials with original Chinese health resources developed by the Chinese health authorities. METHODS Using natural language processing tools for the assessment of the readability of Chinese materials, we explored and compared the readability of Chinese health translations from the World Health Organization with original Chinese materials from China Centre for Disease Control and Prevention. RESULTS Pairwise adjusted t test showed that three new machine learning models achieved statistically significant improvement over the baseline logistic regression in terms of AUC: C5.0 decision tree (p=0.000, 95% CI: -0.249, -0.152), random forest (p=0.000, 95% CI: 0.139, 0.239) and XGBoost Tree (p=0.000, 95% CI: 0.099, 0.193). There was however no significant difference between C5.0 decision tree and random forest (p=0.513). Extreme gradient boost tree was the best model having achieved statistically significant improvement over the C5.0 model (p=0.003) and the Random Forest model (p=0.006) at the adjusted Bonferroni p value at 0.008. CONCLUSIONS The development of machine learning algorithms significantly improved the accuracy and reliability of current approaches to the evaluation of the linguistic accessibility of Chinese health information, especially Chinese health translations in relation to original health resources. Although the new algorithms developed were based on Chinese health resources, they can be adapted for other languages to advance current research in accessible health translation, communication, and promotion.


Author(s):  
Lijetha.C. Jaffrin, Et. al.

Medical diagnosis and treatment of diseases are the key elements of machine learning algorithms nowadays. To find similarities between various diseases, machine learning algorithms are used. Many people are now dying due to sudden heart attacks. Predicting and diagnosing heart disease is a daunting aspect faced by physicians and hospitals around the world. There is a need to foreknow whether or not a person is at risk of heart syndrome in advance, in order to minimize the number of deaths due to heart disease. In this field, machine learning algorithms play a very significant role. Many researchers are carrying out their research in this field to create software that can assist doctors to make decisions about cardiac illness prognosis. In this paper, Random Forest and AdaBoost ensemble Machine Learning Procedures are used in advance to predict heart disease. The datasets are handled in python programming by means of Anaconda Spyder IDE to validate the machine learning algorithm.


2018 ◽  
Vol 7 (2.32) ◽  
pp. 108
Author(s):  
V Srinivas ◽  
K Aditya ◽  
G Prasanth ◽  
R G.Babukarthik ◽  
S Satheeshkumar ◽  
...  

Heart disease and machine learning are the two different words where one is related to medical field and another one to artificial intelligence. In medical filed most of them are facing the problems with the heart disease and machine learning is developing area in computer science. Heart disease is general called cardiac disease where it gives the more data or information, it is to be collected to give the reports for the patients and the machine learning also requires the data for predicting and to solve the problems. Machine learning techniques are used in prediction of heart diseases where it gives the faster prediction with less computation time and better accuracy to progress their health. Heart disease prediction requires lot of data for predicting and in cloud computing also we have more data and the data available in cloud it is difficult to analyze. So we use machine learning algorithms or techniques to predict the heart disease and the in the similar way we can apply these algorithms or techniques to predict or analyze the data that is available in cloud. In this paper we are going to use machine learning algorithms called Backpropagation Algorithm and later we use optimization algorithm later. Backpropagation algorithm deals with the artificial neural networks. Backpropagation is a method used to calculate the error contribution of each neuron after a batch of data (in image recognition, multiple images) is processed. This is used by an enveloping optimization algorithm to adjust the weight of each neuron, completing the learning process for that case. Machine learning algorithms and techniques are used for recognize the intensity of risk issues in humans and it helps the patients to take safety measures in well advances to save the patient’s life. 


Author(s):  
R. Saradha Devi ◽  
Dr. J. G. R. Sathiaseelan

Corona Virus Infectious Disease (COVID-19) is an infectious disease. The COVID-19 disease came to earth in early 2019. It is expanding exponentially throughout the world and affected an enormous number of human beings starting from the last year. COVID-19 was declared “Pandemic” by the World Health Organization (WHO) on March 11, 2020. This research proposed a method for confirming COVID-19 instances after doctors' diagnoses. The goal of this study is to see how similar the projected findings are to the original data in COVID-19 Confirmed-Negative-Released-Death situations using machine learning. This paper suggests a verification approach created on the Deep-learning Neural Network concept for this purpose. Long short-term memory (LSTM) and Gated Recurrent Unit (GRU) are also used in this framework to train the dataset. The outcomes of the forecast match those predicted by clinical doctors.


2020 ◽  
Author(s):  
Siva Kumar Jonnavithula ◽  
Abhilash Kumar Jha ◽  
Modepalli Kavitha ◽  
Singaraju Srinivasulu

Sign in / Sign up

Export Citation Format

Share Document