scholarly journals An Empirical Study on Deep Neural Network Models for Chinese Dialogue Generation

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1756
Author(s):  
Zhe Li ◽  
Mieradilijiang Maimaiti ◽  
Jiabao Sheng ◽  
Zunwang Ke ◽  
Wushour Silamu ◽  
...  

The task of dialogue generation has attracted increasing attention due to its diverse downstream applications, such as question-answering systems and chatbots. Recently, the deep neural network (DNN)-based dialogue generation models have achieved superior performance against conventional models utilizing statistical machine learning methods. However, despite that an enormous number of state-of-the-art DNN-based models have been proposed, there lacks detailed empirical comparative analysis for them on the open Chinese corpus. As a result, relevant researchers and engineers might find it hard to get an intuitive understanding of the current research progress. To address this challenge, we conducted an empirical study for state-of-the-art DNN-based dialogue generation models in various Chinese corpora. Specifically, extensive experiments were performed on several well-known single-turn and multi-turn dialogue corpora, including KdConv, Weibo, and Douban, to evaluate a wide range of dialogue generation models that are based on the symmetrical architecture of Seq2Seq, RNNSearch, transformer, generative adversarial nets, and reinforcement learning respectively. Moreover, we paid special attention to the prevalent pre-trained model for the quality of dialogue generation. Their performances were evaluated by four widely-used metrics in this area: BLEU, pseudo, distinct, and rouge. Finally, we report a case study to show example responses generated by these models separately.

2021 ◽  
Author(s):  
Flávio Arthur Oliveira Santos ◽  
Cleber Zanchettin ◽  
Leonardo Nogueira Matos ◽  
Paulo Novais

Abstract Robustness is a significant constraint in machine learning models. The performance of the algorithms must not deteriorate when training and testing with slightly different data. Deep neural network models achieve awe-inspiring results in a wide range of applications of computer vision. Still, in the presence of noise or region occlusion, some models exhibit inaccurate performance even with data handled in training. Besides, some experiments suggest deep learning models sometimes use incorrect parts of the input information to perform inference. Active image augmentation (ADA) is an augmentation method that uses interpretability methods to augment the training data and improve its robustness to face the described problems. Although ADA presented interesting results, its original version only used the vanilla backpropagation interpretability to train the U-Net model. In this work, we propose an extensive experimental analysis of the interpretability method’s impact on ADA. We use five interpretability methods: vanilla backpropagation, guided backpropagation, gradient-weighted class activation mapping (GradCam), guided GradCam and InputXGradient. The results show that all methods achieve similar performance at the ending of training, but when combining ADA with GradCam, the U-Net model presented an impressive fast convergence.


2018 ◽  
Author(s):  
Hamid Eghbal-zadeh ◽  
Lukas Fischer ◽  
Niko Popitsch ◽  
Florian Kromp ◽  
Sabine Taschner-Mandl ◽  
...  

AbstractDiagnosis and risk stratification of cancer and many other diseases require the detection of genomic breakpoints as a prerequisite of calling copy number alterations (CNA). This, however, is still challenging and requires time-consuming manual curation. As deep-learning methods outperformed classical state-of-the-art algorithms in various domains and have also been successfully applied to life science problems including medicine and biology, we here propose Deep SNP, a novel Deep Neural Network to learn from genomic data. Specifically, we used a manually curated dataset from 12 genomic single nucleotide polymorphism array (SNPa) profiles as truth-set and aimed at predicting the presence or absence of genomic breakpoints, an indicator of structural chromosomal variations, in windows of 40,000 probes. We compare our results with well-known neural network models as well as Rawcopy though this tool is designed to predict breakpoints and in addition genomic segments with high sensitivity. We show, that Deep SNP is capable of successfully predicting the presence or absence of a breakpoint in large genomic windows and outperforms state-of-the-art neural network models. Qualitative examples suggest that integration of a localization unit may enable breakpoint detection and prediction of genomic segments, even if the breakpoint coordinates were not provided for network training. These results warrant further evaluation of DeepSNP for breakpoint localization and subsequent calling of genomic segments.


ChemMedChem ◽  
2021 ◽  
Author(s):  
Christoph Grebner ◽  
Hans Matter ◽  
Daniel Kofink ◽  
Jan Wenzel ◽  
Friedemann Schmidt ◽  
...  

2017 ◽  
Author(s):  
Charlie W. Zhao ◽  
Mark J. Daley ◽  
J. Andrew Pruszynski

AbstractFirst-order tactile neurons have spatially complex receptive fields. Here we use machine learning tools to show that such complexity arises for a wide range of training sets and network architectures, and benefits network performance, especially on more difficult tasks and in the presence of noise. Our work suggests that spatially complex receptive fields are normatively good given the biological constraints of the tactile periphery.


2021 ◽  
Author(s):  
Mohammed Ayub ◽  
SanLinn Kaka

Abstract Manual first-break picking from a large volume of seismic data is extremely tedious and costly. Deployment of machine learning models makes the process fast and cost effective. However, these machine learning models require high representative and effective features for accurate automatic picking. Therefore, First- Break (FB) picking classification model that uses effective minimum number of features and promises performance efficiency is proposed. The variants of Recurrent Neural Networks (RNNs) such as Long ShortTerm Memory (LSTM) and Gated Recurrent Unit (GRU) can retain contextual information from long previous time steps. We deploy this advantage for FB picking as seismic traces are amplitude values of vibration along the time-axis. We use behavioral fluctuation of amplitude as input features for LSTM and GRU. The models are trained on noisy data and tested for generalization on original traces not seen during the training and validation process. In order to analyze the real-time suitability, the performance is benchmarked using accuracy, F1-measure and three other established metrics. We have trained two RNN models and two deep Neural Network models for FB classification using only amplitude values as features. Both LSTM and GRU have the accuracy and F1-measure with a score of 94.20%. With the same features, Convolutional Neural Network (CNN) has an accuracy of 93.58% and F1-score of 93.63%. Again, Deep Neural Network (DNN) model has scores of 92.83% and 92.59% as accuracy and F1-measure, respectively. From the pexperiment results, we see significant superior performance of LSTM and GRU to CNN and DNN when used the same features. For robustness of LSTM and GRU models, the performance is compared with DNN model that is trained using nine features derived from seismic traces and observed that the performance superiority of RNN models. Therefore, it is safe to conclude that RNN models (LSTM and GRU) are capable of classifying the FB events efficiently even by using a minimum number of features that are not computationally expensive. The novelty of our work is the capability of automatic FB classification with the RNN models that incorporate contextual behavioral information without the need for sophisticated feature extraction or engineering techniques that in turn can help in reducing the cost and fostering classification model robust and faster.


2021 ◽  
Author(s):  
Jesus Cano ◽  
Lorenzo Facila ◽  
Philip Langley ◽  
Roberto Zangroniz ◽  
Raul Alcaraz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document