scholarly journals A Simulation on Relation between Power Distribution of Low-Frequency Field Potentials and Conducting Direction of Rhythm Generator Flowing through 3D Asymmetrical Brain Tissue

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 900
Author(s):  
Hao Cheng ◽  
Manling Ge ◽  
Abdelkader Nasreddine Belkacem ◽  
Xiaoxuan Fu ◽  
Chong Xie ◽  
...  

Although the power of low-frequency oscillatory field potentials (FP) has been extensively applied previously, few studies have investigated the influence of conducting direction of deep-brain rhythm generator on the power distribution of low-frequency oscillatory FPs on the head surface. To address this issue, a simulation was designed based on the principle of electroencephalogram (EEG) generation of equivalent dipole current in deep brain, where a single oscillatory dipole current represented the rhythm generator, the dipole moment for the rhythm generator’s conducting direction (which was orthogonal and rotating every 30 degrees and at pointing to or parallel to the frontal lobe surface) and the (an)isotropic conduction medium for the 3D (a)symmetrical brain tissue. Both the power above average (significant power value, SP value) and its space (SP area) of low-frequency oscillatory FPs were employed to respectively evaluate the strength and the space of the influence. The computation was conducted using the finite element method (FEM) and Hilbert transform. The finding was that either the SP value or the SP area could be reduced or extended, depending on the conducting direction of deep-brain rhythm generator flowing in the (an)isotropic medium, suggesting that the 3D (a)symmetrical brain tissue could decay or strengthen the spatial spread of a rhythm generator conducting in a different direction.

2021 ◽  
pp. 16089-16097
Author(s):  
Aditya Robin Singh, Vikash Yadav

Researchers reported decreased nerve entropy Patients with Parkinson's disease (PD) have abnormalities in their basal ganglia (BG). Studies of local field potentials (LFPs) recorded from the hypothalamus and single unit recordings of GP neurons showed this reduction to be significant. According to this hypothesis, these changes are consistent with changes in the ability of the basal ganglion network to encode PD information. Our deep brain stimulation of cortical basal ganglia (DBS) model includes single LFP recordings and shows how entropy changes during DBS. In addition to the extracellular stimulation of supplied STN fibers and LFP mimetics, which are detected differently on a registered electrode, this model includes osteoclast activation and anti-apoptosis. In the DBS network, the firing pattern fluctuated between high-frequency and low-frequency stimuli, since gp neurons in the network showed a decrease in entropy when a high-frequency stimulus was applied and an increase in entropy when a low-frequency stimulus was applied. Second hand. Changes in neural entropy after DBS have been reported experimentally. The simulation results were consistent


2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
David Bergeron ◽  
Sami Obaid ◽  
Marie-Pierre Fournier-Gosselin ◽  
Alain Bouthillier ◽  
Dang Khoa Nguyen

Introduction: To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. Methods: We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. Results: Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. Conclusion: In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.


2007 ◽  
Vol 4 (5) ◽  
pp. 605-614 ◽  
Author(s):  
Sara Marceglia ◽  
Lorenzo Rossi ◽  
Guglielmo Foffani ◽  
AnnaMaria Bianchi ◽  
Sergio Cerutti ◽  
...  

2016 ◽  
Vol 127 (7) ◽  
pp. 2573-2580 ◽  
Author(s):  
Yongzhi Huang ◽  
Huichun Luo ◽  
Alexander L. Green ◽  
Tipu Z. Aziz ◽  
Shouyan Wang

2021 ◽  
Author(s):  
Sara Klaasen ◽  
Patrick Paitz ◽  
Jan Dettmer ◽  
Andreas Fichtner

<p>We present one of the first applications of Distributed Acoustic Sensing (DAS) in a volcanic environment. The goals are twofold: First, we want to examine the feasibility of DAS in such a remote and extreme environment, and second, we search for active volcanic signals of Mount Meager in British Columbia (Canada). </p><p>The Mount Meager massif is an active volcanic complex that is estimated to have the largest geothermal potential in Canada and caused its largest recorded landslide in 2010. We installed a 3-km long fibre-optic cable at 2000 m elevation that crosses the ridge of Mount Meager and traverses the uppermost part of a glacier, yielding continuous measurements from 19 September to 17 October 2019.</p><p>We identify ~30 low-frequency (0.01-1 Hz) and 3000 high-frequency (5-45 Hz) events. The low-frequency events are not correlated with microseismic ocean or atmospheric noise sources and volcanic tremor remains a plausible origin. The frequency-power distribution of the high-frequency events indicates a natural origin, and beamforming on these events reveals distinct event clusters, predominantly in the direction of the main peaks of the volcanic complex. Numerical examples show that we can apply conventional beamforming to the data, and that the results are improved by taking the signal-to-noise ratio of individual channels into account.</p><p>The increased data quantity of DAS can outweigh the limitations due to the lower quality of individual channels in these hazardous and remote environments. We conclude that DAS is a promising tool in this setting that warrants further development.</p>


2017 ◽  
Vol 25 (12) ◽  
pp. 2217-2226 ◽  
Author(s):  
Xing Qian ◽  
Yue Chen ◽  
Yuan Feng ◽  
Bozhi Ma ◽  
Hongwei Hao ◽  
...  

Neurosignals ◽  
2013 ◽  
Vol 21 (1-2) ◽  
pp. 89-98 ◽  
Author(s):  
Gaia Giannicola ◽  
Manuela Rosa ◽  
Sara Marceglia ◽  
Emma Scelzo ◽  
Lorenzo Rossi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document