scholarly journals An Improved Crow Search Algorithm Applied to the Phase Swapping Problem in Asymmetric Distribution Systems

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1329
Author(s):  
Brandon Cortés-Caicedo ◽  
Laura Sofía Avellaneda-Gómez ◽  
Oscar Danilo Montoya ◽  
Lázaro Alvarado-Barrios ◽  
César Álvarez-Arroyo

This paper discusses the power loss minimization problem in asymmetric distribution systems (ADS) based on phase swapping. This problem is presented using a mixed-integer nonlinear programming model, which is resolved by applying a master–slave methodology. The master stage consists of an improved version of the crow search algorithm. This stage is based on the generation of candidate solutions using a normal Gaussian probability distribution. The master stage is responsible for providing the connection settings for the system loads using integer coding. The slave stage uses a power flow for ADSs based on the three-phase version of the iterative sweep method, which is used to determine the network power losses for each load connection supplied by the master stage. Numerical results on the 8-, 25-, and 37-node test systems show the efficiency of the proposed approach when compared to the classical version of the crow search algorithm, the Chu and Beasley genetic algorithm, and the vortex search algorithm. All simulations were obtained using MATLAB and validated in the DigSILENT power system analysis software.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1282 ◽  
Author(s):  
Brandon Cortés-Caicedo ◽  
Laura Sofía Avellaneda-Gómez ◽  
Oscar Danilo Montoya ◽  
Lazaro Alvarado-Barrios ◽  
Harold R. Chamorro

This article discusses the problem of minimizing power loss in unbalanced distribution systems through phase-balancing. This problem is represented by a mixed-integer nonlinear-programming mathematical model, which is solved by applying a discretely encoded Vortex Search Algorithm (DVSA). The numerical results of simulations performed in IEEE 8-, 25-, and 37-node test systems demonstrate the applicability of the proposed methodology when compared with the classical Cuh & Beasley genetic algorithm. In addition, the computation times required by the algorithm to find the optimal solution are in the order of seconds, which makes the proposed DVSA a robust, reliable, and efficient tool. All computational implementations have been developed in the MATLAB® programming environment, and all the results have been evaluated in DigSILENT© software to verify the effectiveness and the proposed three-phase unbalanced power-flow method.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yan Wu ◽  
Tianqi Xia ◽  
Adam Jatowt ◽  
Haoran Zhang ◽  
Xiao Feng ◽  
...  

Abstract Background Heatstroke is becoming an increasingly serious threat to outdoor activities, especially, at the time of large events organized during summer, including the Olympic Games or various types of happenings in amusement parks like Disneyland or other popular venues. The risk of heatstroke is naturally affected by a high temperature, but it is also dependent on various other contextual factors such as the presence of shaded areas along traveling routes or the distribution of relief stations. The purpose of the study is to develop a method to reduce the heatstroke risk of pedestrians for large outdoor events by optimizing relief station placement, volume scheduling and route. Results Our experiments conducted on the planned site of the Tokyo Olympics and simulated during the two weeks of the Olympics schedule indicate that planning routes and setting relief stations with our proposed optimization model could effectively reduce heatstroke risk. Besides, the results show that supply volume scheduling optimization can further reduce the risk of heatstroke. The route with the shortest length may not be the route with the least risk, relief station and physical environment need to be considered and the proposed method can balance these factors. Conclusions This study proposed a novel emergency service problem that can be applied in large outdoor event scenarios with multiple walking flows. To solve the problem, an effective method is developed and evaluates the heatstroke risk in outdoor space by utilizing context-aware indicators which are determined by large and heterogeneous data including facilities, road networks and street view images. We propose a Mixed Integer Nonlinear Programming model for optimizing routes of pedestrians, determining the location of relief stations and the supply volume in each relief station. The proposed method can help organizers better prepare for the event and pedestrians participate in the event more safely.


2021 ◽  
Vol 11 (5) ◽  
pp. 2175
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Jesus C. Hernández

The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment.


2018 ◽  
Vol 30 (4) ◽  
pp. 367-386 ◽  
Author(s):  
Liyang Xiao ◽  
Mahjoub Dridi ◽  
Amir Hajjam El Hassani ◽  
Wanlong Lin ◽  
Hongying Fei

Abstract In this study, we aim to minimize the total waiting time between successive treatments for inpatients in rehabilitation hospitals (departments) during a working day. Firstly, the daily treatment scheduling problem is formulated as a mixed-integer linear programming model, taking into consideration real-life requirements, and is solved by Gurobi, a commercial solver. Then, an improved cuckoo search algorithm is developed to obtain good quality solutions quickly for large-sized problems. Our methods are demonstrated with data collected from a medium-sized rehabilitation hospital in China. The numerical results indicate that the improved cuckoo search algorithm outperforms the real schedules applied in the targeted hospital with regard to the total waiting time of inpatients. Gurobi can construct schedules without waits for all the tested dataset though its efficiency is quite low. Three sets of numerical experiments are executed to compare the improved cuckoo search algorithm with Gurobi in terms of solution quality, effectiveness and capability to solve large instances.


2017 ◽  
Vol 5 (3) ◽  
pp. 267-278 ◽  
Author(s):  
Peng Jia ◽  
Weilun Zhang ◽  
E Wenhao ◽  
Xueshan Sun

Abstract Due to the long operation cycle of maritime transportation and frequent fluctuations of the bunker fuel price, the refueling expenditure of a chartered ship at different time or ports of call make significant difference. From the perspective of shipping company, an optimal set of refueling schemes for a ship fleet operating on different voyage charter routes is an important decision. To address this issue, this paper presents an approach to optimize the refueling scheme and the ship deployment simultaneously with considering the trend of fuel price fluctuations. Firstly, an ARMA model is applied to forecast a time serials of the fuel prices. Then a mixed-integer nonlinear programming model is proposed to maximize total operating profit of the shipping company. Finally, a case study on a charter company with three bulk carriers and three voyage charter routes is conducted. The results show that the optimal solution saves the cost of 437,900 USD compared with the traditional refueling scheme, and verify the rationality and validity of the model.


2014 ◽  
Vol 15 (5) ◽  
pp. 457-469 ◽  
Author(s):  
Mojtaba Khederzadeh ◽  
Mohammad Khalili

Abstract Given that the microgrid concept is the building block of future electric distribution systems and electrical vehicles (EVs) are the future of transportation market, in this paper, the impact of EVs on the performance of microgrids is investigated. Demand-side participation is used to cope with increasing demand for EV charging. The problem of coordination of EV charging and discharging (with vehicle-to-grid (V2G) functionality) and demand response is formulated as a market-clearing mechanism that accepts bids from the demand and supply sides and takes into account the constraints put forward by different parts. Therefore, a day-ahead market with detailed bids and offers within the microgrid is designed whose objective is to maximize the social welfare which is the difference between the value that consumers attach to the electrical energy they buy plus the benefit of the EV owners participating in the V2G functionality and the cost of producing/purchasing this energy. As the optimization problem is a mixed integer nonlinear programming one, it is decomposed into one master problem for energy scheduling and one subproblem for power flow computation. The two problems are solved iteratively by interfacing MATLAB with GAMS. Simulation results on a sample microgrid with different residential, commercial and industrial consumers with associated demand-side biddings and different penetration level of EVs support the proposed formulation of the problem and the applied methods.


Sign in / Sign up

Export Citation Format

Share Document