scholarly journals Deep Neural Network (DNN) for Efficient User Clustering and Power Allocation in Downlink Non-Orthogonal Multiple Access (NOMA) 5G Networks

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1507
Author(s):  
S. Prabha Kumaresan ◽  
Chee Keong Tan ◽  
Yin Hoe Ng

Non-orthogonal multiple access (NOMA) emerges as a promising candidate for 5G, which radically alters the way users share the spectrum. In the NOMA system, user clustering (UC) becomes another research issue as grouping the users on different subcarriers with different power levels has a significant impact on spectral utilization. In previous literature, plenty of works have been devoted to solving the UC problem. Recently, the artificial neural network (ANN) has gained considerable attention due to the availability of UC datasets, obtained from the Brute-Force search (BF-S) method. In this paper, deep neural network-based UC (DNN-UC) is employed to effectively characterize the nonlinearity between the cluster formation with channel diversity and transmission powers. Compared to the ANN-UC, the DNN-UC is more competent as UC is a non-convex NP-complete problem, which cannot be entirely captured by the ANN model. In this work, the DNN-UC is first trained with the training samples and then validated with the testing samples to examine its mean square error (MSE) and throughput performance in an asymmetrical fading NOMA channel. Unlike the ANN-UC, the DNN-UC model offers greater room for hyper-parameter optimizations to maximize its learning capability. With the optimized hyper-parameters, the DNN-UC can achieve near-optimal throughput performance, approximately 97% of the throughput of the BF-S method.

2012 ◽  
Vol 433-440 ◽  
pp. 907-911 ◽  
Author(s):  
Kao Yi Shen

Although the use of earnings prediction in supporting investment decisions has been prevailing in practice, an accounting-based analysis for modeling the key accounting components by time-delay machine learning technique is unexplored. Traditional time-series techniques fail to handle complex data structure, and the fundamental analysis approach cannot model multiple periods’ data effectively. Thus, this study aims to explore the crucial relationships among future earnings and the main historical accounting components, i.e. cash-flow and accrual components. The research method leverages the flexible learning capability of artificial neural network (ANN) with time-delay data structure. The major findings suggested that adding accrual components is helpful for better earnings prediction, and the proposed 5-period time-delay ANN model may capture the future earnings in a positive way. The results of this study may help to support investment decisions and better understanding for the role of accruals in earnings.


Author(s):  
Shu-Farn Tey ◽  
Chung-Feng Liu ◽  
Tsair-Wei Chien ◽  
Chin-Wei Hsu ◽  
Kun-Chen Chan ◽  
...  

Unplanned patient readmission (UPRA) is frequent and costly in healthcare settings. No indicators during hospitalization have been suggested to clinicians as useful for identifying patients at high risk of UPRA. This study aimed to create a prediction model for the early detection of 14-day UPRA of patients with pneumonia. We downloaded the data of patients with pneumonia as the primary disease (e.g., ICD-10:J12*-J18*) at three hospitals in Taiwan from 2016 to 2018. A total of 21,892 cases (1208 (6%) for UPRA) were collected. Two models, namely, artificial neural network (ANN) and convolutional neural network (CNN), were compared using the training (n = 15,324; ≅70%) and test (n = 6568; ≅30%) sets to verify the model accuracy. An app was developed for the prediction and classification of UPRA. We observed that (i) the 17 feature variables extracted in this study yielded a high area under the receiver operating characteristic curve of 0.75 using the ANN model and that (ii) the ANN exhibited better AUC (0.73) than the CNN (0.50), and (iii) a ready and available app for predicting UHA was developed. The app could help clinicians predict UPRA of patients with pneumonia at an early stage and enable them to formulate preparedness plans near or after patient discharge from hospitalization.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Yanfang Wang ◽  
Saeed Salehi

Real-time drilling optimization improves drilling performance by providing early warnings in operation Mud hydraulics is a key aspect of drilling that can be optimized by access to real-time data. Different from the investigated references, reliable prediction of pump pressure provides an early warning of circulation problems, washout, lost circulation, underground blowout, and kicks. This will help the driller to make necessary corrections to mitigate potential problems. In this study, an artificial neural network (ANN) model to predict hydraulics was implemented through the fitting tool of matlab. Following the determination of the optimum model, the sensitivity analysis of input parameters on the created model was investigated by using forward regression method. Next, the remaining data from the selected well samples was applied for simulation to verify the quality of the developed model. The novelty is this paper is validation of computer models with actual field data collected from an operator in LA. The simulation result was promising as compared with collected field data. This model can accurately predict pump pressure versus depth in analogous formations. The result of this work shows the potential of the approach developed in this work based on NN models for predicting real-time drilling hydraulics.


2013 ◽  
Vol 8 (1) ◽  
pp. 53-70 ◽  
Author(s):  
Amit Kumar Singh ◽  
Barjeev Tyagi ◽  
Vishal Kumar

Abstract To get the better product quality and to decrease the energy consumption of the distillation column, an accurate and suitable nonlinear model is crucial important. In this work, two types of model have been developed for an existing experimental setup of continuous binary distillation column (BDC). First model is a theoretical tray-to-tray binary distillation model for describing the steady-state behavior of composition in response to changes in reflux flows and in reboiler duty. Another model is an artificial neural network (ANN)–based input/output data relationship model. In ANN-based model, temperature of first tray, feed flow rate, and column pressures have been taken in addition to reflux flow rate and reboiler heat duty as inputs to give the more accurate I/O relationship. The comparison of output of ANN model and the equation-based model with the real-time output of the experimental setup of BDC has been given for the validation of developed models.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


2021 ◽  
Vol 5 (2) ◽  
pp. 109-118
Author(s):  
Euis Saraswati ◽  
Yuyun Umaidah ◽  
Apriade Voutama

Coronavirus disease (Covid-19) or commonly called coronavirus. This virus spreads very quickly and even almost infects the whole world, including Indonesia. A large number of cases and the rapid spread of this virus make people worry and even fear the increasing spread of the Covid-19 virus. Information about this virus has also been spread on various social media, one of which is Twitter. Various public opinions regarding the Covid-19 virus are also widely expressed on Twitter. Opinions on a tweet contain positive or negative sentiments. Sentiments of sentiment contained in a tweet can be used as material for consideration and evaluation for the government in dealing with the Covid-19 virus. Based on these problems, a sentiment analysis classification is needed to find out public opinion on the Covid-19 virus. This research uses Artificial Neural Network (ANN) algorithm with the Backpropagation method. The results of this test get 88.62% accuracy, 91.5% precision, and 95.73% recall. The results obtained show that the ANN model is quite good for classifying text mining.


Author(s):  
Ana Maria Mihaela Gherman ◽  
Katalin Kovács ◽  
Mircea Vasile Cristea ◽  
Valer Tosa

In this work we present the results obtained with an artificial neural network (ANN) which we trained to predict the expected output of high-order harmonic generation (HHG) process, while exploring a multi-dimensional parameter space. We argue on the utility and efficiency of the ANN model and demonstrate its ability to predict the outcome of HHG simulations. In this case study we present the results for a loose focusing HHG beamline, where the changing parameters are: the laser pulse energy, gas pressure, gas cell position relative to focus and gas cell length. The physical quantity which we predict here using ANN is directly related to the total harmonic yield in a specified spectral domain (20-40 eV). We discuss the versatility and adaptability of the presented method.


Sign in / Sign up

Export Citation Format

Share Document