scholarly journals The Effect of the Repair of Induced Articular Cartilage Defects in Pigs Using Calcium Phosphate Cement with Aminoacids on the Concentrations of Selected Inflammatory Markers and Serum Enzyme Activities

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1720
Author(s):  
Csilla Tóthová ◽  
Oskar Nagy ◽  
Jaroslav Novotný ◽  
Katarína Vdoviaková ◽  
Lenka Krešáková ◽  
...  

The repair of articular cartilage defects is an intensively developing area of research. Severe inflammatory reactions after surgical interventions on bones or their structures may lead to changes of bone or joint asymmetry. In laboratory diagnostics, some inflammatory biomarkers and serum enzymes are available for the evaluation of these inflammatory processes. A general understanding of inflammatory responses following the repair of cartilage defects is still lacking. The aim of this study was to describe the alterations in the values of five inflammatory markers and the activities of several enzymes in seven 5-month-old pigs within the first 30 days following the restoration of induced articular cartilage defects using the tetracalcium phosphate/nanomoneite cement powder enriched with amino acids (CAL). The reconstruction of surgically induced defects was accompanied by a significant increase of serum amyloid A (SAA, p < 0.05), haptoglobin (Hp, p < 0.001), C-reactive protein (CRP, p < 0.01), and pig major acute phase protein (pig-MAP, p < 0.001). Their concentrations decreased gradually within one-month post-surgery, the values recorded at the end of this period were higher than those obtained prior to surgery. The concentrations of α1-acid glycoprotein (AGP) showed no significant changes during the evaluated period. Alterations were also found in the enzyme activities of creatine kinase (p < 0.05), lactate-dehydrogenase and alkaline phosphatase (p < 0.01). These findings suggest that SAA, Hp, CRP and pig-MAP might be applicable biomarkers of acute phase response for the monitoring of postoperative period.

Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 931 ◽  
Author(s):  
Csilla Tothova ◽  
Jaroslav Novotny ◽  
Oskar Nagy ◽  
Petra Hornakova ◽  
Zdenek Zert ◽  
...  

The objective of the study was to assess the usefulness of acute-phase proteins (APPs) and serum enzymes in the evaluation of post-operative state after cartilage reconstruction in an animal model (Sus scrofa domesticus). Fifteen clinically healthy female pigs were evaluated during the first 30 days after the repair of experimentally induced articular cartilage defects using two types of biocement powders. Animals were divided into groups according to the type of biocement powder used: CAK—with amino acids (n = 6), C—without amino acids (n = 6) and the control group (Ctr) was without biocement (n = 3). The concentrations of selected APPs—serum amyloid A (SAA), haptoglobin (Hp) and C-reactive protein (CRP), and the activities of some serum enzymes—creatine kinase (CK), alkaline phosphatase (AP), and lactate dehydrogenase (LD) were measured one day before the surgery and on days 7, 14, and 30 after the surgical intervention. The most significant changes during the evaluated period were observed in the concentrations of SAA (p < 0.001) and Hp (p < 0.001), with marked increase of values 7 days after surgery. There was a numerical, but not statistically significant, difference between CAK, C and Ctr groups (p > 0.05). Marked variations were observed also in the activities of the evaluated enzymes, with the most significant changes in the activity of AP in the CAK group (p < 0.001). Presented results suggest possible usefulness of some APPs and serum enzymes in the evaluation of post-operative inflammatory state after the reconstruction of articular cartilage defects.


2020 ◽  
Author(s):  
Zelong Dou ◽  
Daniel Muder ◽  
Marta Baroncelli ◽  
Ameya Bendre ◽  
Alexandra Gkourogianni ◽  
...  

AbstractReconstruction of articular surfaces destroyed by infection or trauma is hampered by the lack of suitable graft tissues. Perichondrium autotransplants have been used for this purpose. However, the role of the transplanted perichondrium in the healing of resurfaced joints have not been investigated. Perichondrial and periosteal tissues were harvested from rats hemizygous for a ubiquitously expressed enhanced green fluorescent protein (EGFP) transgene and transplanted into full-thickness articular cartilage defects at the trochlear groove of distal femur in wild-type littermates. As an additional control, cartilage defects were left without a transplant (no transplant control). Distal femurs were collected 3, 14, 56, 112 days after surgery. Transplanted cells and their progenies were readily detected in the defects of perichondrium and periosteum transplanted animals but not in defects left without a transplant. Perichondrium transplants expressed SOX9 and with time differentiated into a hyaline cartilage that expanded and filled out the defects with Col2a1-positive chondrocytes and a matrix rich in proteoglycans. Interestingly, at later timepoints the cartilaginous perichondrium transplants were actively remodeled into bone at the transplant-bone interface and at post-surgery day 112 EGFP-positive perichondrium cells at the articular surface were positive for Prg4. In addition, both perichondrium and periosteum transplants contributed cells to the subchondral bone and bone marrow, suggesting differentiation into osteoblast/osteocytes as well as bone marrow cells. In summary, we found that perichondrium transplanted to articular cartilage defects develops into an articular-like, hyaline cartilage that integrates with the subchondral bone, and is maintained for an extended time. The findings indicate that perichondrium is a suitable tissue for repair and engineering of articular cartilage.


Author(s):  
Zhong Li ◽  
Yikang Bi ◽  
Qi Wu ◽  
Chao Chen ◽  
Lu Zhou ◽  
...  

AbstractTo evaluate the performance of a composite scaffold of Wharton’s jelly (WJ) and chondroitin sulfate (CS) and the effect of the composite scaffold loaded with human umbilical cord mesenchymal stem cells (hUCMSCs) in repairing articular cartilage defects, two experiments were carried out. The in vitro experiments involved identification of the hUCMSCs, construction of the biomimetic composite scaffolds by the physical and chemical crosslinking of WJ and CS, and testing of the biomechanical properties of both the composite scaffold and the WJ scaffold. In the in vivo experiments, composite scaffolds loaded with hUCMSCs and WJ scaffolds loaded with hUCMSCs were applied to repair articular cartilage defects in the rat knee. Moreover, their repair effects were evaluated by the unaided eye, histological observations, and the immunogenicity of scaffolds and hUCMSCs. We found that in vitro, the Young’s modulus of the composite scaffold (WJ-CS) was higher than that of the WJ scaffold. In vivo, the composite scaffold loaded with hUCMSCs repaired rat cartilage defects better than did the WJ scaffold loaded with hUCMSCs. Both the scaffold and hUCMSCs showed low immunogenicity. These results demonstrate that the in vitro construction of a human-derived WJ-CS composite scaffold enhances the biomechanical properties of WJ and that the repair of knee cartilage defects in rats is better with the composite scaffold than with the single WJ scaffold if the scaffold is loaded with hUCMSCs.


1999 ◽  
Vol 65 (5) ◽  
pp. 402-407 ◽  
Author(s):  
A. Carranza-Bencano ◽  
M. Perez-Tinao ◽  
P. Ballesteros-Vazquez ◽  
J. R. Armas-Padron ◽  
A. Hevia-Alonso ◽  
...  

1987 ◽  
Vol 148 (6) ◽  
pp. 1153-1157 ◽  
Author(s):  
VM Gylys-Morin ◽  
PC Hajek ◽  
DJ Sartoris ◽  
D Resnick

In Vivo ◽  
2018 ◽  
Vol 32 (6) ◽  
pp. 1289-1300 ◽  
Author(s):  
BEATA ŻYLIŃSKA ◽  
PIOTR SILMANOWICZ ◽  
ALEKSANDRA SOBCZYŃSKA-RAK ◽  
ŁUKASZ JAROSZ ◽  
TOMASZ SZPONDER

Sign in / Sign up

Export Citation Format

Share Document