scholarly journals Determining the Tiers of a Supply Chain Using Machine Learning Algorithms

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1934
Author(s):  
Kyoung Jong Park

Companies in the same supply chain influence each other, so sharing information enables more efficient supply chain management. An efficient supply chain must have a symmetry of information between participating entities, but in reality, the information is asymmetric, causing problems. The sustainability of the supply chain continues to be threatened because companies are reluctant to disclose information to others. If companies participating in the supply chain do not disclose accurate information, the next best way to improve the sustainability of the supply chain is to use data from the supply chain to determine each enterprise’s information. This study takes data from the supply chain and then uses machine learning algorithms to find which enterprise the data refer to when new data from unknown sources arise. The machine learning algorithms used are logistic regression, random forest, naive Bayes, decision tree, support vector machine, k-nearest neighbor, and multi-layer perceptron. Indicators for evaluating the performance of multi-class classification machine learning methods are accuracy, confusion matrix, precision, recall, and F1-score. The experimental results showed that LR and MLP accurately predicted companies (tiers), but NB, DT, RF, SVM, and K-NN did not accurately predict companies. In addition, the performance similarity of machine learning algorithms through experiments was classified into LR and MLP groups, NB and DT groups, and RF, SVM, and K-NN groups.

Author(s):  
Sandy C. Lauguico ◽  
◽  
Ronnie S. Concepcion II ◽  
Jonnel D. Alejandrino ◽  
Rogelio Ruzcko Tobias ◽  
...  

The arising problem on food scarcity drives the innovation of urban farming. One of the methods in urban farming is the smart aquaponics. However, for a smart aquaponics to yield crops successfully, it needs intensive monitoring, control, and automation. An efficient way of implementing this is the utilization of vision systems and machine learning algorithms to optimize the capabilities of the farming technique. To realize this, a comparative analysis of three machine learning estimators: Logistic Regression (LR), K-Nearest Neighbor (KNN), and Linear Support Vector Machine (L-SVM) was conducted. This was done by modeling each algorithm from the machine vision-feature extracted images of lettuce which were raised in a smart aquaponics setup. Each of the model was optimized to increase cross and hold-out validations. The results showed that KNN having the tuned hyperparameters of n_neighbors=24, weights='distance', algorithm='auto', leaf_size = 10 was the most effective model for the given dataset, yielding a cross-validation mean accuracy of 87.06% and a classification accuracy of 91.67%.


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 104 ◽  
Author(s):  
Ahmed ◽  
Yigit ◽  
Isik ◽  
Alpkocak

Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.


Witheverypassingsecondsocialnetworkcommunityisgrowingrapidly,becauseofthat,attackershaveshownkeeninterestinthesekindsofplatformsandwanttodistributemischievouscontentsontheseplatforms.Withthefocus on introducing new set of characteristics and features forcounteractivemeasures,agreatdealofstudieshasresearchedthe possibility of lessening the malicious activities on social medianetworks. This research was to highlight features for identifyingspammers on Instagram and additional features were presentedto improve the performance of different machine learning algorithms. Performance of different machine learning algorithmsnamely, Multilayer Perceptron (MLP), Random Forest (RF), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)were evaluated on machine learning tools named, RapidMinerand WEKA. The results from this research tells us that RandomForest (RF) outperformed all other selected machine learningalgorithmsonbothselectedmachinelearningtools.OverallRandom Forest (RF) provided best results on RapidMiner. Theseresultsareusefulfortheresearcherswhoarekeentobuildmachine learning models to find out the spamming activities onsocialnetworkcommunities.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bhagya M. Patil ◽  
Vishwanath Burkpalli

Cotton is one of the major crops in India, where 23% of cotton gets exported to other countries. The cotton yield depends on crop growth, and it gets affected by diseases. In this paper, cotton disease classification is performed using different machine learning algorithms. For this research, the cotton leaf image database was used to segment the images from the natural background using modified factorization-based active contour method. First, the color and texture features are extracted from segmented images. Later, it has to be fed to the machine learning algorithms such as multilayer perceptron, support vector machine, Naïve Bayes, Random Forest, AdaBoost, and K-nearest neighbor. Four color features and eight texture features were extracted, and experimentation was done using three cases: (1) only color features, (2) only texture features, and (3) both color and texture features. The performance of classifiers was better when color features are extracted compared to texture feature extraction. The color features are enough to classify the healthy and unhealthy cotton leaf images. The performance of the classifiers was evaluated using performance parameters such as precision, recall, F-measure, and Matthews correlation coefficient. The accuracies of classifiers such as support vector machine, Naïve Bayes, Random Forest, AdaBoost, and K-nearest neighbor are 93.38%, 90.91%, 95.86%, 92.56%, and 94.21%, respectively, whereas that of the multilayer perceptron classifier is 96.69%.


Author(s):  
Munder Abdulatef Al-Hashem ◽  
Ali Mohammad Alqudah ◽  
Qasem Qananwah

Knowledge extraction within a healthcare field is a very challenging task since we are having many problems such as noise and imbalanced datasets. They are obtained from clinical studies where uncertainty and variability are popular. Lately, a wide number of machine learning algorithms are considered and evaluated to check their validity of being used in the medical field. Usually, the classification algorithms are compared against medical experts who are specialized in certain disease diagnoses and provide an effective methodological evaluation of classifiers by applying performance metrics. The performance metrics contain four criteria: accuracy, sensitivity, and specificity forming the confusion matrix of each used algorithm. We have utilized eight different well-known machine learning algorithms to evaluate their performances in six different medical datasets. Based on the experimental results we conclude that the XGBoost and K-Nearest Neighbor classifiers were the best overall among the used datasets and signs can be used for diagnosing various diseases.


Current global huge cyber protection attacks resulting from Infected Encryption ransomware structures over all international locations and businesses with millions of greenbacks lost in paying compulsion abundance. This type of malware encrypts consumer files, extracts consumer files, and charges higher ransoms to be paid for decryption of keys. An attacker could use different types of ransomware approach to steal a victim's files. Some of ransomware attacks like Scareware, Mobile ransomware, WannaCry, CryptoLocker, Zero-Day ransomware attack etc. A zero-day vulnerability is a software program security flaw this is regarded to the software seller however doesn’t have patch in vicinity to restore a flaw. Despite the fact that machine learning algorithms are already used to find encryption Ransomware. This is based on the analysis of a large number of PE file data Samples (benign software and ransomware utility) makes use of supervised machine learning algorithms for ascertain Zero-day attacks. This work was done on a Microsoft Windows operating system (the most attacked os through encryption ransomware) and estimated it. We have used four Supervised learning Algorithms, Random Forest Classifier , K-Nearest Neighbor, Support Vector Machine and Logistic Regression. Tests using machine learning algorithms evaluate almost null false positives with a 99.5% accuracy with a random forest algorithm.


2021 ◽  
Vol 7 ◽  
pp. e437
Author(s):  
Arushi Agarwal ◽  
Purushottam Sharma ◽  
Mohammed Alshehri ◽  
Ahmed A. Mohamed ◽  
Osama Alfarraj

In today’s cyber world, the demand for the internet is increasing day by day, increasing the concern of network security. The aim of an Intrusion Detection System (IDS) is to provide approaches against many fast-growing network attacks (e.g., DDoS attack, Ransomware attack, Botnet attack, etc.), as it blocks the harmful activities occurring in the network system. In this work, three different classification machine learning algorithms—Naïve Bayes (NB), Support Vector Machine (SVM), and K-nearest neighbor (KNN)—were used to detect the accuracy and reducing the processing time of an algorithm on the UNSW-NB15 dataset and to find the best-suited algorithm which can efficiently learn the pattern of the suspicious network activities. The data gathered from the feature set comparison was then applied as input to IDS as data feeds to train the system for future intrusion behavior prediction and analysis using the best-fit algorithm chosen from the above three algorithms based on the performance metrics found. Also, the classification reports (Precision, Recall, and F1-score) and confusion matrix were generated and compared to finalize the support-validation status found throughout the testing phase of the model used in this approach.


2021 ◽  
Vol 2 (01) ◽  
pp. 10-19
Author(s):  
Ibrahim Ibrahim ◽  
Adnan Abdulazeez

Nowadays, machine learning algorithms have become very important in the medical sector, especially for diagnosing disease from the medical database. Many companies using these techniques for the early prediction of diseases and enhance medical diagnostics. The motivation of this paper is to give an overview of the machine learning algorithms that are applied for the identification and prediction of many diseases such as Naïve Bayes, logistic regression, support vector machine, K-nearest neighbor, K-means clustering, decision tree, and random forest. In this work, many previous studies were reviewed that used machine learning algorithms for detecting various diseases in the medical area in the last three years. A comparison is provided concerning these algorithms, assessment processes, and the obtained results. Finally, a discussion of the previous works is presented.


Artificial intelligence is the technology that lets a machine mimic the thinking ability of a human being. Machine learning is the subset of AI, that makes this machine exhibit human behavior by making it learn from the known data, without the need of explicitly programming it. The health care sector has adopted this technology, for the development of medical procedures, maintaining huge patient’s records, assist physicians in the prediction, detection, and treatment of diseases and many more. In this paper, a comparative study of six supervised machine learning algorithms namely Logistic Regression(LR),support vector machine(SVM),Decision Tree(DT).Random Forest(RF),k-nearest neighbor(k-NN),Naive Bayes (NB) are made for the classification and prediction of diseases. Result shows out of compared supervised learning algorithms here, logistic regression is performing best with an accuracy of 81.4 % and the least performing is k-NN with just an accuracy of 69.01% in the classification and prediction of diseases.


Sign in / Sign up

Export Citation Format

Share Document