scholarly journals Classification model for accuracy and intrusion detection using machine learning approach

2021 ◽  
Vol 7 ◽  
pp. e437
Author(s):  
Arushi Agarwal ◽  
Purushottam Sharma ◽  
Mohammed Alshehri ◽  
Ahmed A. Mohamed ◽  
Osama Alfarraj

In today’s cyber world, the demand for the internet is increasing day by day, increasing the concern of network security. The aim of an Intrusion Detection System (IDS) is to provide approaches against many fast-growing network attacks (e.g., DDoS attack, Ransomware attack, Botnet attack, etc.), as it blocks the harmful activities occurring in the network system. In this work, three different classification machine learning algorithms—Naïve Bayes (NB), Support Vector Machine (SVM), and K-nearest neighbor (KNN)—were used to detect the accuracy and reducing the processing time of an algorithm on the UNSW-NB15 dataset and to find the best-suited algorithm which can efficiently learn the pattern of the suspicious network activities. The data gathered from the feature set comparison was then applied as input to IDS as data feeds to train the system for future intrusion behavior prediction and analysis using the best-fit algorithm chosen from the above three algorithms based on the performance metrics found. Also, the classification reports (Precision, Recall, and F1-score) and confusion matrix were generated and compared to finalize the support-validation status found throughout the testing phase of the model used in this approach.

Author(s):  
Munder Abdulatef Al-Hashem ◽  
Ali Mohammad Alqudah ◽  
Qasem Qananwah

Knowledge extraction within a healthcare field is a very challenging task since we are having many problems such as noise and imbalanced datasets. They are obtained from clinical studies where uncertainty and variability are popular. Lately, a wide number of machine learning algorithms are considered and evaluated to check their validity of being used in the medical field. Usually, the classification algorithms are compared against medical experts who are specialized in certain disease diagnoses and provide an effective methodological evaluation of classifiers by applying performance metrics. The performance metrics contain four criteria: accuracy, sensitivity, and specificity forming the confusion matrix of each used algorithm. We have utilized eight different well-known machine learning algorithms to evaluate their performances in six different medical datasets. Based on the experimental results we conclude that the XGBoost and K-Nearest Neighbor classifiers were the best overall among the used datasets and signs can be used for diagnosing various diseases.


Author(s):  
Pullagura Indira Priyadarsini ◽  
G. Anuradha

Vast increase in data through internet services has made computer systems more vulnerable and difficult to protect from malicious attacks. Intrusion detection systems (IDSs) must be more potent in monitoring intrusions. Therefore an effectual Intrusion Detection system architecture is built which employs a facile classification model and generates low false alarm rates and high accuracy. Noticeably, IDS endure enormous amounts of data traffic that contain redundant and irrelevant features, which affect the performance of the IDS negatively. Despite good feature selection approaches leads to a reduction of unrelated and redundant features and attain better classification accuracy in IDS. This paper proposes a novel ensemble model for IDS based on two algorithms Fuzzy Ensemble Feature selection (FEFS) and Fusion of Multiple Classifier (FMC). FEFS is a unification of five feature scores. These scores are obtained by using feature-class distance functions. Aggregation is done using fuzzy union operation. On the other hand, the FMC is the fusion of three classifiers. It works based on Ensemble decisive function. Experiments were made on KDD cup 99 data set have shown that our proposed system works superior to well-known methods such as Support Vector Machines (SVMs), K-Nearest Neighbor (KNN) and Artificial Neural Networks (ANNs). Our examinations ensured clearly the prominence of using ensemble methodology for modeling IDSs. And hence our system is robust and efficient.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1934
Author(s):  
Kyoung Jong Park

Companies in the same supply chain influence each other, so sharing information enables more efficient supply chain management. An efficient supply chain must have a symmetry of information between participating entities, but in reality, the information is asymmetric, causing problems. The sustainability of the supply chain continues to be threatened because companies are reluctant to disclose information to others. If companies participating in the supply chain do not disclose accurate information, the next best way to improve the sustainability of the supply chain is to use data from the supply chain to determine each enterprise’s information. This study takes data from the supply chain and then uses machine learning algorithms to find which enterprise the data refer to when new data from unknown sources arise. The machine learning algorithms used are logistic regression, random forest, naive Bayes, decision tree, support vector machine, k-nearest neighbor, and multi-layer perceptron. Indicators for evaluating the performance of multi-class classification machine learning methods are accuracy, confusion matrix, precision, recall, and F1-score. The experimental results showed that LR and MLP accurately predicted companies (tiers), but NB, DT, RF, SVM, and K-NN did not accurately predict companies. In addition, the performance similarity of machine learning algorithms through experiments was classified into LR and MLP groups, NB and DT groups, and RF, SVM, and K-NN groups.


2020 ◽  
pp. 471-476
Author(s):  
Gitanjali Wadhwa ◽  
Mansi Mathur

The important part of female reproductive system is ovaries. The importance of these tiny glands is derived from the production of female sex hormones and female gametes. The place of these ductless almond shaped tiny glandular organs is on just opposite sides of uterus attached with ovarian ligament. There are several reasons due to which ovarian cancer can arise but it can be classified by using different number of techniques. Early prediction of ovarian cancer will decrease its progress rate and may possibly save countless lives. CAD systems (Computer-aided diagnosis) is a noninvasive routine for finding ovarian cancer in its initial stages of cancer which can keep away patients’ anxiety and unnecessary biopsy. This review paper states us about how we can use different techniques to classify the ovarian cancer tumor. In this survey effort we have also deliberate about the comparison of different machine learning algorithms like K-Nearest Neighbor, Support Vector Machine and deep learning techniques used in classification process of ovarian cancer. Later comparing the different techniques for this type of cancer detection, it gives the impression that Deep Learning Technique has provided good results and come out with good accuracy and other performance metrics.


Knowledge extraction within a healthcare field is a very challenging task since we are having many problems such as noise and imbalanced datasets. They are obtained from clinical studies where uncertainty and variability are popular. Lately, a wide number of machine learning algorithms are considered and evaluated to check their validity of being used in the medical field. Usually, the classification algorithms are compared against medical experts who are specialized in certain disease diagnoses and provide an effective methodological evaluation of classifiers by applying performance metrics. The performance metrics contain four criteria: accuracy, sensitivity, and specificity forming the confusion matrix of each used algorithm. We have utilized eight different well-known machine learning algorithms to evaluate their performances in six different medical datasets. Based on the experimental results we conclude that the XGBoost and K-Nearest Neighbor classifiers were the best overall among the used datasets and signs can be used for diagnosing various diseases.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


Author(s):  
M. Ilayaraja ◽  
S. Hemalatha ◽  
P. Manickam ◽  
K. Sathesh Kumar ◽  
K. Shankar

Cloud computing is characterized as the arrangement of assets or administrations accessible through the web to the clients on their request by cloud providers. It communicates everything as administrations over the web in view of the client request, for example operating system, organize equipment, storage, assets, and software. Nowadays, Intrusion Detection System (IDS) plays a powerful system, which deals with the influence of experts to get actions when the system is hacked under some intrusions. Most intrusion detection frameworks are created in light of machine learning strategies. Since the datasets, this utilized as a part of intrusion detection is Knowledge Discovery in Database (KDD). In this paper detect or classify the intruded data utilizing Machine Learning (ML) with the MapReduce model. The primary face considers Hadoop MapReduce model to reduce the extent of database ideal weight decided for reducer model and second stage utilizing Decision Tree (DT) classifier to detect the data. This DT classifier comprises utilizing an appropriate classifier to decide the class labels for the non-homogeneous leaf nodes. The decision tree fragment gives a coarse section profile while the leaf level classifier can give data about the qualities that influence the label inside a portion. From the proposed result accuracy for detection is 96.21% contrasted with existing classifiers, for example, Neural Network (NN), Naive Bayes (NB) and K Nearest Neighbor (KNN).


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


Author(s):  
Sandy C. Lauguico ◽  
◽  
Ronnie S. Concepcion II ◽  
Jonnel D. Alejandrino ◽  
Rogelio Ruzcko Tobias ◽  
...  

The arising problem on food scarcity drives the innovation of urban farming. One of the methods in urban farming is the smart aquaponics. However, for a smart aquaponics to yield crops successfully, it needs intensive monitoring, control, and automation. An efficient way of implementing this is the utilization of vision systems and machine learning algorithms to optimize the capabilities of the farming technique. To realize this, a comparative analysis of three machine learning estimators: Logistic Regression (LR), K-Nearest Neighbor (KNN), and Linear Support Vector Machine (L-SVM) was conducted. This was done by modeling each algorithm from the machine vision-feature extracted images of lettuce which were raised in a smart aquaponics setup. Each of the model was optimized to increase cross and hold-out validations. The results showed that KNN having the tuned hyperparameters of n_neighbors=24, weights='distance', algorithm='auto', leaf_size = 10 was the most effective model for the given dataset, yielding a cross-validation mean accuracy of 87.06% and a classification accuracy of 91.67%.


Sign in / Sign up

Export Citation Format

Share Document