scholarly journals Determination of Parabens, Bisphenol A and Its Analogs, Triclosan, and Benzophenone-3 Levels in Human Urine by Isotope-Dilution-UPLC-MS/MS Method Followed by Supported Liquid Extraction

Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Hsin-Chang Chen ◽  
Jung-Wei Chang ◽  
Yi-Chen Sun ◽  
Wan-Ting Chang ◽  
Po-Chin Huang

The development of a rapid analytical approach for determining levels of antibacterial agents, plasticizers, and ultraviolet filters in biosamples is crucial for individual exposure assessment. We developed an analytical method to determine the levels of four parabens—bisphenols A (BPA) and its analogs, triclosan (TCS), triclocarban, and benzophenone-3 (BP-3)—in human urine. We further measured the levels of these chemicals in children and adolescents. We used a supported liquid extraction (SLE) technique coupled with an isotope-dilution ultraperformance liquid chromatography-tandem mass spectrometry (ID-UPLC-MS/MS) method to assess the detection performance for these chemicals. Forty-one urine samples from 13 children and 28 adolescents were assessed to demonstrate the capability and feasibility of our method. An acceptable recovery (75.6–102.4%) and matrix effect (precision < 14.2%) in the three-level spiked artificial urine samples were achieved, and good performance of the validated ID-UPLC-MS/MS method regarding linearity, limits of detection, and quantitation was achieved. The within-run and between-run accuracy and precision also demonstrated the sensitivity and stability of this analytical method, applied after SLE. We concluded that the ID-UPLC-MS/MS method with SLE pretreatment is a valuable analytical method for the investigation of urinary antibacterial agents, plasticizers, and ultraviolet filters in humans, useful for human biomonitoring.

Author(s):  
Jessica Schmidt ◽  
Viktoria Lindemann ◽  
Monica Olsen ◽  
Benedikt Cramer ◽  
Hans-Ulrich Humpf

AbstractA simple and effective approach for HPLC-MS/MS based multi-mycotoxin analysis in human urine samples was developed by application of dried urine spots (DUS) as alternative on-site sampling strategy. The newly developed method enables the detection and quantitation of 14 relevant mycotoxins and mycotoxin metabolites, including citrinin (CIT), dihydrocitrinone (DH-CIT), deoxynivalenol (DON), fumonisin B1 (FB1), T-2 Toxin (T-2), HT-2 Toxin (HT-2), ochratoxin A (OTA), 2′R-ochratoxin A (2′R-OTA), ochratoxin α (OTα), tenuazonic acid and allo-tenuazonic acid (TeA + allo-TeA), zearalenone (ZEN), zearalanone (ZAN), α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL). Besides the spotting procedure, sample preparation includes enzymatic cleavage of glucuronic acid conjugates and stable isotope dilution analysis. Method validation revealed low limits of detection in the range of pg/mL urine and excellent apparent recovery rates for most analytes. Stability investigation of DUS displayed no or only slight decrease of the analyte concentration over a period of 28 days at room temperature. The new method was applied to the analysis of a set of urine samples (n = 91) from a Swedish cohort. The four analytes, DH-CIT, DON, OTA, and TeA + allo-TeA, could be detected and quantified in amounts ranging from 0.06 to 0.97 ng/mL, 3.03 to 136 ng/mL, 0.013 to 0.434 ng/mL and from 0.36 to 47 ng/mL in 38.5%, 70.3%, 68.1%, and 94.5% of the samples, respectively. Additional analysis of these urine samples with an established dilute and shoot (DaS) approach displayed a high consistency of the results obtained with both methods. However, due to higher sensitivity, a larger number of positive samples were observed using the DUS method consequently providing a suitable approach for human biomonitoring of mycotoxin exposure.


Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 193 ◽  
Author(s):  
Zhezhe Liu ◽  
Xiaoxue Zhao ◽  
Libiao Wu ◽  
Shuang Zhou ◽  
Zhiyong Gong ◽  
...  

A variety of mycotoxins from different sources frequently contaminate farm products, presenting a potential toxicological concern for animals and human. Mycotoxin exposure has been the focus of attention for governments around the world. To date, biomarkers are used to monitor mycotoxin exposure and promote new understanding of their role in chronic diseases. The goal of this research was to develop and validate a sensitive UHPLC-MS/MS method using isotopically-labeled internal standards suitable for accurate determination of 18 mycotoxin biomarkers, including fumonisins, ochratoxins, Alternaria and emerging Fusarium mycotoxins (fumonisin B1, B2, and B3, hydrolyzed fumonisin B1 and B2, ochratoxin A, B, and alpha, alternariol, alternariol monomethyl ether, altenuene, tentoxin, tenuazonic acid, beauvericin, enniatin A, A1, B, and B1) in human urine. After enzymatic digestion with β-glucuronidase, human urine samples were cleaned up using HLB solid phase extraction cartridges prior to instrument analysis. The multi-mycotoxin and analyte-specific method was validated in-house, providing satisfactory results. The method provided good linearity in the tested concentration range (from LOQ up to 25–500 ng/mL for different analytes), with R2 from 0.997 to 0.999. The limits of quantitation varied from 0.0002 to 0.5 ng/mL for all analytes in urine. The recoveries for spiked samples were between 74.0% and 133%, with intra-day precision of 0.5%–8.7% and inter-day precision of 2.4%–13.4%. This method was applied to 60 urine samples collected from healthy volunteers in Beijing, and 10 biomarkers were found. At least one biomarker was found in all but one of the samples. The high sensitivity and accuracy of this method make it practical for human biomonitoring and mycotoxin exposure assessment.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 42
Author(s):  
Noelia Pallarés ◽  
Dionisia Carballo ◽  
Emilia Ferrer ◽  
Yelko Rodríguez-Carrasco ◽  
Houda Berrada

Human biomonitoring constitutes a suitable tool to assess exposure to toxins overcoming the disadvantages of traditional methods. Urine constitutes an accessible biological matrix in biomonitoring studies. Mycotoxins are secondary metabolites produced naturally by filamentous fungi that produce a wide range of adverse health effects. Thus, the determination of urinary mycotoxin levels is a useful tool for assessing the individual exposure to these food contaminants. In this study, a suitable methodology has been developed to evaluate the presence of aflatoxin B2 (AFB2), aflatoxin (AFG2), ochratoxin A (OTA), ochratoxin B (OTB), zearalenone (ZEA), and α-zearalenol (α-ZOL) in urine samples as exposure biomarkers. For this purpose, different extraction procedures, namely, the Solid Phase Extraction (SPE); Dispersive Liquid–Liquid Microextraction (DLLME); and Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods were assessed, followed by Liquid Chromatography coupled to Quadrupole Time of Flight Mass Spectrometry with Electrospray Ionization (LC-ESI-QTOF-MS) determination. Then, the proposed methodology was applied to determine mycotoxin concentrations in 56 human urine samples from volunteers and to estimate the potential risk of exposure. The results obtained revealed that 55% of human urine samples analyzed resulted positive for at least one mycotoxin. Among all studied mycotoxins, only AFB2, AFG2, and OTB were detected with incidences of 32, 41, and 9%, respectively, and levels in the range from <LOQ to 69.42 µg/L. Risk assessment revealed a potential health risk, obtaining MoE values < 10,000. However, it should be highlighted that few samples were contaminated, and that more data about mycotoxin excretion rates and their BMDL10 values are needed for a more accurate risk assessment.


2003 ◽  
Vol 86 (4) ◽  
pp. 643-656 ◽  
Author(s):  
William A Trujillo ◽  
Wendy R Sorenson ◽  
D Gray ◽  
J Laurensen ◽  
G Luo ◽  
...  

Abstract A collaborative study was conducted to evaluate the accuracy and precision of a method for ephedrine-type alkaloids (i.e., norephedrine, norpseudoephedrine, ephedrine, pseudoephedrine, methylephedrine, and methylpseudoephedrine) in human urine and plasma. The amount of ephedrine-type alkaloids present was determined using liquid chromatography (LC) with tandem mass selective detection. The test samples were diluted to reflect a concentration of 5.00–100 ng/mL for each alkaloid. An internal standard was added and the alkaloids were separated using a 5 μm phenyl LC column with an ammonium acetate, glacial acetic acid, acetonitrile, and water mobile phase. Eight blind duplicates of human urine and eight blind duplicates of human plasma were analyzed by 10 collaborators. In addition to negative controls, test portions of urine and plasma were fortified at 3 different levels with each of the 6 ephedrine-type alkaloids at approximately 1, 2, and 5 μg/mL for urine and 100, 200, and 500 ng/mL for plasma. On the basis of the accuracy and precision results for this collaborative study, it is recommended that this method be adopted Official First Action for the determination of 6 different ephedrine-type alkaloids in human urine and plasma.


Sign in / Sign up

Export Citation Format

Share Document