scholarly journals Microbial Transglutaminase Is a Very Frequently Used Food Additive and Is a Potential Inducer of Autoimmune/Neurodegenerative Diseases

Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 233
Author(s):  
Aaron Lerner ◽  
Carina Benzvi

Microbial transglutaminase (mTG) is a heavily used food additive and its industrial transamidated complexes usage is rising rapidly. It was classified as a processing aid and was granted the GRAS (generally recognized as safe) definition, thus escaping full and thorough toxic and safety evaluations. Despite the manufacturers claims, mTG or its cross-linked compounds are immunogenic, pathogenic, proinflammatory, allergenic and toxic, and pose a risk to public health. The enzyme is a member of the transglutaminase family and imitates the posttranslational modification of gluten, by the tissue transglutaminase, which is the autoantigen of celiac disease. The deamidated and transamidated gliadin peptides lose their tolerance and induce the gluten enteropathy. Microbial transglutaminase and its complexes increase intestinal permeability, suppresses enteric protective pathways, enhances microbial growth and gliadin peptide’s epithelial uptake and can transcytose intra-enterocytically to face the sub-epithelial immune cells. The present review updates on the potentially detrimental side effects of mTG, aiming to interest the scientific community, induce food regulatory authorities’ debates on its safety, and protect the public from the mTG unwanted effects.

2020 ◽  
Vol 21 (3) ◽  
pp. 1127 ◽  
Author(s):  
Aaron Lerner ◽  
Torsten Matthias

Microbial transglutaminase (mTG) is a survival factor for microbes, but yeasts, fungi, and plants also produce transglutaminase. mTG is a cross-linker that is heavily consumed as a protein glue in multiple processed food industries. According to the manufacturers’ claims, microbial transglutaminase and its cross-linked products are safe, i.e., nonallergenic, nonimmunogenic, and nonpathogenic. The regulatory authorities declare it as “generally recognized as safe” for public users. However, scientific observations are accumulating concerning its undesirable effects on human health. Functionally, mTG imitates its family member, tissue transglutaminase, which is the autoantigen of celiac disease. Both these transglutaminases mediate cross-linked complexes, which are immunogenic in celiac patients. The enzyme enhances intestinal permeability, suppresses mechanical (mucus) and immunological (anti phagocytic) enteric protective barriers, stimulates luminal bacterial growth, and augments the uptake of gliadin peptide. mTG and gliadin molecules are cotranscytosed through the enterocytes and deposited subepithelially. Moreover, mucosal dendritic cell surface transglutaminase induces gliadin endocytosis, and the enzyme-treated wheat products are immunoreactive in CD patients. The present review summarizes and updates the potentially detrimental effects of mTG, aiming to stimulate scientific and regulatory debates on its safety, to protect the public from the enzyme’s unwanted effects.


Author(s):  
Inmaculada de Melo-Martín ◽  
Kristen Intemann

Current debates about climate change or vaccine safety provide an alarming illustration of the potential impacts of dissent about scientific claims. False beliefs about evidence and the conclusions that can be drawn from it are commonplace, as is corrosive doubt about the existence of widespread scientific consensus. Deployed aggressively and to political ends, ill-founded dissent can intimidate scientists, stymie research, and lead both the public and policymakers to oppose important policies firmly rooted in science. To criticize dissent is, however, a fraught exercise. Skepticism and fearless debate are key to the scientific process, making it both vital and incredibly difficult to characterize and identify dissent that is problematic in its approach and consequences. Indeed, as de Melo-Martín and Intemann show, the criteria commonly proposed as means of identifying inappropriate dissent are flawed, and the strategies generally recommended to tackle such dissent are not only ineffective but could even make the situation worse. The Fight against Doubt proposes that progress on this front can best be achieved by enhancing the trustworthiness of the scientific community and being more realistic about the limits of science when it comes to policymaking. It shows that a richer understanding is needed of the context in which science operates so as to disarm problematic dissent and those who deploy it in the pursuit of their goals.


2019 ◽  
Vol 54 (4) ◽  
pp. 241-246 ◽  
Author(s):  
J.F. Bottollier-Depois ◽  
E. Allain ◽  
G. Baumont ◽  
N. Berthelot ◽  
G. Darley ◽  
...  

After the Fukushima accident, initiatives emerged offering the public the possibility to realise measurements of the radioactivity in the environment with various devices and to share data and experiences through collaborative tools. The objective of the OpenRadiation project is to offer the public the opportunity to perform measurements of the radioactivity using connected dosimeters on smartphones. The challenge is to operate such a system on a sustainable basis in normal situations and in order to be useful in an emergency situation. In normal situations, this project is based on a collaborative approach including pedagogical activities. In case of emergency situation, data from the field will be available in “real time” providing an opportunity for the emergency management and the communication with the public. The practical objectives are to develop i) a website centralising measurements using various dosimeters, providing dose rate maps with raw and filtered data and offering dedicated areas for specific projects and exchanges about data and ii) a dosimetric app using a connected dosimeter. This project is conducted within a partnership between organisms’ representative of the scientific community and associations to create links with the public.


2016 ◽  
Vol 35 (3) ◽  
pp. 358-370 ◽  
Author(s):  
Paul Hanlon ◽  
Gregory P. Brorby ◽  
Mansi Krishan

Processing (eg, cooking, grinding, drying) has changed the composition of food throughout the course of human history; however, awareness of process-formed compounds, and the potential need to mitigate exposure to those compounds, is a relatively recent phenomenon. In May 2015, the North American Branch of the International Life Sciences Institute (ILSI North America) Technical Committee on Food and Chemical Safety held a workshop on the risk-based process for mitigation of process-formed compounds. This workshop aimed to gain alignment from academia, government, and industry on a risk-based process for proactively assessing the need for and benefit of mitigation of process-formed compounds, including criteria to objectively assess the impact of mitigation as well as research needed to support this process. Workshop participants provided real-time feedback on a draft framework in the form of a decision tree developed by the ILSI North America Technical Committee on Food and Chemical Safety to a panel of experts, and they discussed the importance of communicating the value of such a process to the larger scientific community and, ultimately, the public. The outcome of the workshop was a decision tree that can be used by the scientific community and could form the basis of a global approach to assessing the risks associated with mitigation of process-formed compounds.


Oryx ◽  
1987 ◽  
Vol 21 (2) ◽  
pp. 74-80 ◽  
Author(s):  
J. Márcio Ayres ◽  
Andrew D. Johns

Until two decades ago, the only reference to the white uacari of the upper Amazon, known locally as the ‘English monkey’, had been provided by the British naturalist Henry Walter Bates, who saw captured animals during his sojourn in Amazonia in the 1850s. A major Brazilian initiative led us to the first intensive field study of the species, which was carried out in 1983 and 1984 by one of the authors, J. M. Ayres, with the participation of a large number of Brazilian scientists and a few from overseas. The study illustrated the uniqueness of the várzea habitat in which the animals live and the threats it currently faces. It also captured the attention of both the Brazilian scientific community and the public. Possibilities for the creation of a reserve area within the várzea are now being implemented.


2021 ◽  
Vol 29 (1) ◽  
pp. 36-61
Author(s):  
Michael Poznic ◽  
Rafaela Hillerbrand

Climatologists have recently introduced a distinction between projections as scenario-based model results on the one hand and predictions on the other hand. The interpretation and usage of both terms is, however, not univocal. It is stated that the ambiguities of the interpretations may cause problems in the communication of climate science within the scientific community and to the public realm. This paper suggests an account of scenarios as props in games of make-belive. With this account, we explain the difference between projections that should be make-believed and other model results that should be believed.


The Bacteriological Code deals with the nomenclature of prokaryotes. This may include existing names (the Approved Lists of Bacterial Names) as well as new names and new combinations. In this sense the Code is also dealing indirectly with taxonomic opinions. However, as with most codes of nomenclature there are no mechanisms for formally recording taxonomic opinions that do not involve the creation of new names or new combinations. In particular, it would be desirable for taxonomic opinions resulting from the creation of synonyms or emended descriptions to be made widely available to the public. In 2004, the Editorial Board of the International Journal of Systematic and Evolutionary Microbiology (IJSEM) agreed unanimously that it was desirable to cover such changes in taxonomic opinions (i.e. the creation of synonyms or the emendation of circumscriptions) previously published outside the IJSEM, and to introduce a List of Changes in Taxonomic Opinion [Notification of changes in taxonomic opinion previously published outside the IJSEM; Euzéby et al. (2004). Int J Syst Evol Microbiol 54, 1429–1430]. Scientists wishing to have changes in taxonomic opinion included in future lists should send one copy of the pertinent reprint or a photocopy or a PDF file thereof to the IJSEM Editorial Office or to the Lists Editor. It must be stressed that the date of proposed taxonomic changes is the date of the original publication not the date of publication of the list. Taxonomic opinions included in the List of Changes in Taxonomic Opinion cannot be considered as validly published nor, in any other way, approved by the International Committee on Systematics of Prokaryotes and its Judicial Commission. The names that are to be used are those that are the ‘correct names’ (in the sense of Principle 6) in the opinion of the bacteriologist, with a given circumscription, position and rank. A particular name, circumscription, position and rank does not have to be adopted in all circumstances. Consequently, the List of Changes in Taxonomic Opinion must be considered as a service to bacteriology and it has no ‘official character’, other than providing a centralized point for registering/indexing such changes in a way that makes them easily accessible to the scientific community.


2015 ◽  
Author(s):  
Ronald D Vale

Scientific publications enable results and ideas to be transmitted throughout the scientific community. The number and type of journal publications also have become the primary criteria used in evaluating career advancement. Our analysis suggests that publication practices have changed considerably in the life sciences over the past thirty years. More experimental data is now required for publication, and the average time required for graduate students to publish their first paper has increased and is approaching the desirable duration of Ph.D. training. Since publication is generally a requirement for career progression, schemes to reduce the time of graduate student and postdoctoral training may be difficult to implement without also considering new mechanisms for accelerating communication of their work. The increasing time to publication also delays potential catalytic effects that ensue when many scientists have access to new information. The time has come for life scientists, funding agencies, and publishers to discuss how to communicate new findings in a way that best serves the interests of the public and the scientific community.


Sign in / Sign up

Export Citation Format

Share Document