scholarly journals The Modes of Action of MARTX Toxin Effector Domains

Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 507 ◽  
Author(s):  
Byoung Kim

Many Gram-negative bacterial pathogens directly deliver numerous effector proteins from the bacterium to the host cell, thereby altering the target cell physiology. The already well-characterized effector delivery systems are type III, type IV, and type VI secretion systems. Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are another effector delivery platform employed by some genera of Gram-negative bacteria. These single polypeptide exotoxins possess up to five effector domains in a modular fashion in their central regions. Upon binding to the host cell plasma membrane, MARTX toxins form a pore using amino- and carboxyl-terminal repeat-containing arms and translocate the effector domains into the cells. Consequently, MARTX toxins affect the integrity of the host cells and often induce cell death. Thus, they have been characterized as crucial virulence factors of certain human pathogens. This review covers how each of the MARTX toxin effector domains exhibits cytopathic and/or cytotoxic activities in cells, with their structural features revealed recently. In addition, future directions for the comprehensive understanding of MARTX toxin-mediated pathogenesis are discussed.

2014 ◽  
Vol 70 (a1) ◽  
pp. C826-C826
Author(s):  
Abbas Maqbool ◽  
Richard Richard ◽  
Tolga Bozkurt ◽  
Yasin Dagdas ◽  
Khaoula Belhai ◽  
...  

Autophagy is a catabolic process involving degradation of dysfunctional cytoplasmic components to ensure cellular survival under starvation conditions. The process involves formation of double-membrane vesicles called autophagosomes and delivery of the inner constituents to lytic compartments. It can also target invading pathogens, such as intracellular bacteria, for destruction and is thus implicated in innate immune pathways [1]. In response, certain mammalian pathogens deliver effector proteins into host cells that inhibit autophagy and contribute to enabling parasitic infection [2]. Pyhtophthora infestans, the Irish potato famine pathogen, is a causative agent of late blight disease in potato and tomato crops. It delivers a plethora of modular effector proteins into plant cells to promote infection. Once inside the cell, RXLR-type effector proteins engage with host cell proteins, to manipulate host cell physiology for the benefit of the pathogen. As plants lack an adaptive immune system, this provides a robust mechanism for pathogens to circumvent host defense. PexRD54 is an intracellular RXLR-type effector protein produced by P. infestans. PexRD54 interacts with potato homologues of autophagy protein ATG8 in plant cells. We have been investigating the structural and biochemical basis of the PexRD54/ATG8 interaction in vitro. We have purified PexRD54 and ATG8 independently and in complex from E. coli. Using protein/protein interaction studies we have shown that PexRD54 binds ATG8 with sub-micromolar affinity. We have also determined the structure of PexRD54 in the presence of ATG8. This crystal structure provides key insights into how the previously reported WY-fold of oomycete RXLR-type effectors [3] can be organized in multiple repeats. The structural data also provides insights into the interaction between PexRD54 and ATG8, suggesting further experiments to understand the impact of this interaction on host cell physiology and how this benefits the pathogen.


2017 ◽  
Vol 38 (3) ◽  
pp. 112
Author(s):  
Joshua PM Newson

The bacterium Salmonella causes a spectrum of foodborne diseases ranging from acute gastroenteritis to systemic infections, and represents a significant burden of disease globally. In Australia, Salmonella is frequently associated with outbreaks and is a leading cause of foodborne illness, which results in a significant medical and economic burden. Salmonella infection involves colonisation of the small intestine, where the bacteria invades host cells and establishes an intracellular infection. To survive within host cells, Salmonella employs type-three secretion systems to deliver bacterial effector proteins into the cytoplasm of host cells. These bacterial effectors seek out and modify specific host proteins, disrupting host processes such as cell signalling, intracellular trafficking, and programmed cell death. This strategy of impairing host cells allows Salmonella to establish a replicative niche within the cell, where they can replicate to high numbers before escaping to infect neighbouring cells, or be transmitted to new hosts. While the importance of effector protein translocation to infection is well established, our understanding of many effector proteins remains incomplete. Many Salmonella effectors have unknown function and unknown roles during infection. A greater understanding of how Salmonella manipulates host cells during infection will lead to improved strategies to prevent, control, and eliminate disease. Further, studying effector proteins can be a useful means for exploring host cell biology and elucidating the details of host cell signalling.


2005 ◽  
Author(s):  
David L. Coplin ◽  
Shulamit Manulis ◽  
Isaac Barash

Gram-negative plant pathogenic bacteria employ specialized type-III secretion systems (TTSS) to deliver an arsenal of pathogenicity proteins directly into host cells. These secretion systems are encoded by hrp genes (for hypersensitive response and pathogenicity) and the effector proteins by so-called dsp or avr genes. The functions of effectors are to enable bacterial multiplication by damaging host cells and/or by blocking host defenses. We characterized essential hrp gene clusters in the Stewart's Wilt of maize pathogen, Pantoea stewartii subsp. stewartii (Pnss; formerly Erwinia stewartii) and the gall-forming bacterium, Pantoea agglomerans (formerly Erwinia herbicola) pvs. gypsophilae (Pag) and betae (Pab). We proposed that the virulence and host specificity of these pathogens is a function of a) the perception of specific host signals resulting in bacterial hrp gene expression and b) the action of specialized signal proteins (i.e. Hrp effectors) delivered into the plant cell. The specific objectives of the proposal were: 1) How is the expression of the hrp and effector genes regulated in response to host cell contact and the apoplastic environment? 2) What additional effector proteins are involved in pathogenicity? 3) Do the presently known Pantoea effector proteins enter host cells? 4) What host proteins interact with these effectors? We characterized the components of the hrp regulatory cascade (HrpXY ->7 HrpS ->7 HrpL ->7 hrp promoters), showed that they are conserved in both Pnss and Fag, and discovered that the regulation of the hrpS promoter (hrpSp) may be a key point in integrating apoplastic signals. We also analyzed the promoters recognized by HrpL and demonstrated the relationship between their composition and efficiency. Moreover, we showed that promoter strength can influence disease expression. In Pnss, we found that the HrpXY two-component signal system may sense the metabolic status of the bacterium and is required for full hrp gene expression in planta. In both species, acyl-homoserine lactone-mediated quorum sensing may also regulate epiphytic fitness and/or pathogenicity. A common Hrp effector protein, DspE/WtsE, is conserved and required for virulence of both species. When introduced into corn cells, Pnss WtsE protein caused water-soaked lesions. In other plants, it either caused cell death or acted as an Avr determinant. Using a yeast- two-hybrid system, WtsE was shown to interact with a number of maize signal transduction proteins that are likely to have roles in either programmed cell death or disease resistance. In Pag and Pab, we have characterized the effector proteins HsvG, HsvB and PthG. HsvG and HsvB are homologous proteins that determine host specificity of Pag and Pab on gypsophila and beet, respectively. Both possess a transcriptional activation domain that functions in yeast. PthG was found to act as an Avr determinant on multiple beet species, but was required for virulence on gypsophila. In addition, we demonstrated that PthG acts within the host cell. Additional effector genes have been characterized on the pathogenicity plasmid, pPATHₚₐg, in Pag. A screen for HrpL- regulated genes in Pnsspointed up 18 candidate effector proteins and four of these were required for full virulence. It is now well established that the virulence of Gram-negative plant pathogenic bacteria is governed by Hrp-dependent effector proteins. However; the mode of action of many effectors is still unresolved. This BARD supported research will significantly contribute to the understanding of how Hrp effectors operate in Pantoea spp. and how they control host specificity and affect symptom production. This may lead to novel approaches for genetically engineering plants resistant to a wide range of bacterial pathogens by inactivating the Hrp effectors with "plantabodies" or modifying their receptors, thereby blocking the induction of the susceptible response. Alternatively, innovative technologies could be used to interfere with the Hrp regulatory cascade by blocking a critical step or mimicking plant or quorum sensing signals.   


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Lihi Shaulov ◽  
Jenia Gershberg ◽  
Wanyin Deng ◽  
B. Brett Finlay ◽  
Neta Sal-Man

ABSTRACT The type III secretion system (T3SS) is a multiprotein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. To ensure that effector proteins are efficiently translocated into the host cell, bacteria must be able to sense their contact with the host cell. In this study, we found that EscP, which was previously shown to function as the ruler protein of the enteropathogenic Escherichia coli T3SS, is also involved in the switch from the secretion of translocator proteins to the secretion of effector proteins. In addition, we demonstrated that EscP can interact with the gatekeeper protein SepL and that the EscP-SepL complex dissociates upon a calcium concentration drop. We suggest a model in which bacterial contact with the host cell is accompanied by a drop in the calcium concentration that causes SepL-EscP complex dissociation and triggers the secretion of effector proteins. IMPORTANCE The emergence of multidrug-resistant bacterial strains, especially those of pathogenic bacteria, has serious medical and clinical implications. At the same time, the development and approval of new antibiotics have been limited for years. Recently, antivirulence drugs have received considerable attention as a novel antibiotic strategy that specifically targets bacterial virulence rather than growth, an approach that applies milder evolutionary pressure on the bacteria to develop resistance. A highly attractive target for the development of antivirulence compounds is the type III secretion system, a specialized secretory system possessed by many Gram-negative bacterial pathogens for injecting virulence factors (effectors) into host cells. In this study, we shed light on the molecular mechanism that allows bacteria to sense their contact with the host cell and to respond with the timed secretion of effector proteins. Understanding this critical step for bacterial virulence may provide a new therapeutic strategy. IMPORTANCE The emergence of multidrug-resistant bacterial strains, especially those of pathogenic bacteria, has serious medical and clinical implications. At the same time, the development and approval of new antibiotics have been limited for years. Recently, antivirulence drugs have received considerable attention as a novel antibiotic strategy that specifically targets bacterial virulence rather than growth, an approach that applies milder evolutionary pressure on the bacteria to develop resistance. A highly attractive target for the development of antivirulence compounds is the type III secretion system, a specialized secretory system possessed by many Gram-negative bacterial pathogens for injecting virulence factors (effectors) into host cells. In this study, we shed light on the molecular mechanism that allows bacteria to sense their contact with the host cell and to respond with the timed secretion of effector proteins. Understanding this critical step for bacterial virulence may provide a new therapeutic strategy.


mSystems ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Ryan L. Sontag ◽  
Ernesto S. Nakayasu ◽  
Roslyn N. Brown ◽  
George S. Niemann ◽  
Michael A. Sydor ◽  
...  

ABSTRACT During infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets of Salmonella and Citrobacter effectors, which will help elucidate their mechanisms of action. Many pathogenic bacteria of the family Enterobacteriaceae use type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from the Enterobacteriaceae intracellular pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium. We identified 54 high-confidence host interactors for the Salmonella effectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for the Citrobacter effectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfH Salmonella protein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction. IMPORTANCE During infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets of Salmonella and Citrobacter effectors, which will help elucidate their mechanisms of action.


Microbiology ◽  
2006 ◽  
Vol 152 (8) ◽  
pp. 2323-2343 ◽  
Author(s):  
Nat F. Brown ◽  
Jason Szeto ◽  
Xiuju Jiang ◽  
Brian K. Coombes ◽  
B. Brett Finlay ◽  
...  

Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen causing disease in several hosts. These bacteria use two distinct type III secretion systems that inject effector proteins into the host cell for invasion and to alter maturation of the Salmonella-containing vacuole. Members of the Salmonella translocated effector (STE) family contain a conserved N-terminal translocation signal of approximately 140 aa. In this study, the STE family member SifA was examined using deletion strategies. Small deletions (approx. 20 residues long) throughout SifA were sufficient to block its secretion and/or translocation into host cells. Transfection of HeLa cells with a GFP-SifA fusion was previously shown to be sufficient to induce formation of Sif-like tubules resembling structures present in Salmonella-infected cells. The present study showed that both N- and C-terminal domains of SifA are required for this phenotype. Furthermore, both domains could induce aggregation of Lamp1-positive compartments, provided they were coupled to the minimal C-terminal membrane-anchoring motif of SifA. Mutation or deletion of the conserved STE N-terminal WEK(I/M)xxFF translocation motif of SopD2 disrupted its association with Lamp1-positive compartments, implicating these residues in both effector translocation and subcellular localization. Interestingly, one GFP-SifA deletion mutant lacking residues 42–101, but retaining the WEK(I/M)xxFF motif, targeted the Golgi apparatus. In addition, short peptides containing the signature WEK(I/M)xxFF motif derived from the N-termini of Salmonella effectors SopD2, SseJ and SspH2 were sufficient to localize GFP to the Golgi. These studies suggest that Salmonella effectors contain multifunctional motifs or domains that regulate several effector traits, including protein secretion/translocation, localization and subversion of host cell systems. Conditions that perturb the tertiary structure of effectors can influence their localization in host cells by liberating cryptic intracellular targeting motifs.


Data ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 45 ◽  
Author(s):  
Koray Açıcı ◽  
Tunç Aşuroğlu ◽  
Çağatay Erdaş ◽  
Hasan Oğul

Extensive research has been carried out on bacterial secretion systems, as they can pass effector proteins directly into the cytoplasm of host cells. The correct prediction of type IV protein effectors secreted by T4SS is important, since they are known to play a noteworthy role in various human pathogens. Studies on predicting T4SS effectors involve traditional machine learning algorithms. In this work we included a deep learning architecture, i.e., a Convolutional Neural Network (CNN), to predict IVA and IVB effectors. Three feature extraction methods were utilized to represent each protein as an image and these images fed the CNN as inputs in our proposed framework. Pseudo proteins were generated using ADASYN algorithm to overcome the imbalanced dataset problem. We demonstrated that our framework predicted all IVA effectors correctly. In addition, the sensitivity performance of 94.2% for IVB effector prediction exhibited our framework’s ability to discern the effectors in unidentified proteins.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 589
Author(s):  
Md Kamrul Hasan ◽  
Samir El Qaidi ◽  
Philip R. Hardwidge

Whether type III secretion system (T3SS) effector proteins encoded by Gram-negative bacterial pathogens have intra-bacterial activities is an important and emerging area of investigation. Gram-negative bacteria interact with their mammalian hosts by using secretion systems to inject virulence proteins directly into infected host cells. Many of these injected protein effectors are enzymes that modify the structure and inhibit the function of mammalian proteins. The underlying dogma is that T3SS effectors are inactive until they are injected into host cells, where they then fold into their active conformations. We previously observed that the T3SS effectors NleB and SseK1 glycosylate Citrobacter rodentium and Salmonella enterica proteins, respectively, leading to enhanced resistance to environmental stress. Here, we sought to extend these studies to determine whether the T3SS effector protease NleC is also active within C. rodentium. To do this, we expressed the best-characterized mammalian substrate of NleC, the NF-κB p65 subunit in C. rodentium and monitored its proteolytic cleavage as a function of NleC activity. Intra-bacterial p65 cleavage was strictly dependent upon NleC. A p65 mutant lacking the known CE cleavage motif was resistant to NleC. Thus, we conclude that, in addition to NleB, NleC is also enzymatically active within C. rodentium.


mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Kerri-Lynn Sheahan ◽  
Ralph R. Isberg

ABSTRACTThe type III secretion system (T3SS) is a highly conserved protein delivery system found in multiple Gram-negative pathogens, includingYersinia pseudotuberculosis. Most studies of Yersinia species type III intoxication of host cells have focused on the bacterial determinants that promote assembly and function of the secretion system. In this study, we performed a pooled RNA interference (RNAi) screen to identify mammalian host proteins required for the cytotoxic effects associated with the Yersinia translocated substrate YopE, a GTPase-activating protein (GAP) that inactivates the small Rho GTPases. Cell populations were positively selected for short hairpin RNAs (shRNAs) that interfere with YopE activity using a combination of fluorescence resonance energy transfer (FRET) and flow cytometry, and the degree of enrichment was determined by deep sequencing. Analysis of the candidates identified by the enrichment process revealed that many were important for the initial step of Y. pseudotuberculosis T3SS function, YopB/D pore formation. These candidates included shRNA that depleted downstream effectors of RhoA signaling, coated pit formation, and receptors involved in cell signaling, including the chemokine receptor CCR5 (chemokine [C-C motif] receptor 5). Depletion of CCR5 in 293T cells yielded a defect in YopB/D pore formation and effector translocation, while both phenotypes could be complemented by overexpression of CCR5 protein. Yop effector translocation was also decreased in isolated primary phagocytic cells from aCcr5−/−knockout mouse. We postulate that CCR5 acts to promote translocation by modulating cytoskeletal activities necessary for proper assembly of the YopB/D translocation pore. Overall, this study presents a new approach to investigating the contribution of the host cell to T3SS in Y. pseudotuberculosis.IMPORTANCEMany Gram-negative bacteria require type III secretion systems (T3SS) for host survival, making these highly specialized secretion systems good targets for antimicrobial agents. After the bacterium binds to host cells, T3SS deposit proteins into the cytosol of host cells through a needle-like appendage and a protein translocon channel. Translocation of proteins via this system is highly regulated, and the contribution of the host cell in promoting assembly and insertion of the channel into the plasma membrane, folding of the bacterial proteins, and trafficking of these substrates are all poorly characterized events. In this study, we identified host cell proteins important for activity of YopE, aYersinia pseudotuberculosisT3SS-delivered protein. The results demonstrate that insertion and assembly of the translocon are complex processes, requiring a variety of membrane trafficking and cytoskeletal processes, as well as a surprising role for cell surface signaling molecules in supporting proper function.


2021 ◽  
Author(s):  
Alexander Carsten ◽  
Maren Rudolph ◽  
Tobias Weihs ◽  
Roman Schmidt ◽  
Christian A. Wurm ◽  
...  

AbstractType 3 secretion systems (T3SS) are essential virulence factors of numerous bacterial pathogens and inject effector proteins into host cells. The needle-like T3SS machinery consists of more than 20 components, has a length of around 100 nm and a diameter of up to 30 nm according to EM studies. Its intrabacterial components are highly dynamic and in permanent exchange with other bacterial structures. Therefore, a temporally and spatially resolved visualization of the T3SS using fluorescence microscopy techniques has been challenging. In the present study, novel labeling strategies were combined with super-resolution microscopy such as STED, STORM and MINFLUX. MINFLUX nanoscopy allowed to visualize components of the T3SS machinery such as the dynamic sorting platform component YscL and the extrabacterial pore protein YopD at unprecedented resolutions. The presented results represent the basis for an in depth investigation of T3SS structure and function and therefore gain new insights into the infection process of human pathogens in order to develop novel treatment and prevention strategies.


Sign in / Sign up

Export Citation Format

Share Document