scholarly journals Determination of Fungi and Multi-Class Mycotoxins in Camelia sinensis and Herbal Teas and Dietary Exposure Assessment

Toxins ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 555
Author(s):  
Ingars Reinholds ◽  
Estefanija Bogdanova ◽  
Iveta Pugajeva ◽  
Laura Alksne ◽  
Darta Stalberga ◽  
...  

In this paper, a study of fungal and multi-mycotoxin contamination in 140 Camellia sinensis and 26 herbal teas marketed in Latvia is discussed. The analysis was performed using two-dimensional liquid chromatography with time-of-flight mass spectrometry (2D-LC-TOF-MS) and MALDI-TOF-MS. In total, 87% of the tea samples tested positive for 32 fungal species belonging to 17 genera, with the total enumeration of moulds ranging between 1.00 × 101 and 9.00 × 104 CFU g−1. Moreover, 42% of the teas (n = 70) were contaminated by 1 to 16 mycotoxins, and 37% of these samples were positive for aflatoxins at concentrations ranging between 0.22 and 41.7 µg kg−1. Deoxynivalenol (DON) and its derivatives co-occurred in 63% of the tea samples, with their summary concentrations reaching 81.1 to 17,360 µg kg−1. Ochratoxin A (OTA), enniatins, and two Alternaria toxins were found in 10–37% of the teas at low concentrations. The dietary exposure assessment based on the assumption of a probable full transfer of determined mycotoxins into infusions indicated that the analysed teas are safe for consumers: the probable maximum daily exposure levels to OTA and the combined DON mycotoxins were only 0.88 to 2.05% and 2.50 to 78.9% of the tolerable daily intake levels.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 813
Author(s):  
Magdalena Świądro ◽  
Paweł Stelmaszczyk ◽  
Irena Lenart ◽  
Renata Wietecha-Posłuszny

The purpose of this study was to develop and validate a high-sensitivity methodology for identifying one of the most used drugs—ketamine. Ketamine is used medicinally to treat depression, alcoholism, and heroin addiction. Moreover, ketamine is the main ingredient used in so-called “date-rape” pills (DRP). This study presents a novel methodology for the simultaneous determination of ketamine based on the Dried Blood Spot (DBS) method, in combination with capillary electrophoresis coupled with a mass spectrometer (CE-TOF-MS). Then, 6-mm circles were punched out from DBS collected on Whatman DMPK-C paper and extracted using microwave-assisted extraction (MAE). The assay was linear in the range of 25–300 ng/mL. Values of limits of detection (LOD = 6.0 ng/mL) and quantification (LOQ = 19.8 ng/mL) were determined based on the signal to noise ratio. Intra-day precision at each determined concentration level was in the range of 6.1–11.1%, and inter-day between 7.9–13.1%. The obtained precision was under 15.0% (for medium and high concentrations) and lower than 20.0% (for low concentrations), which are in accordance with acceptance criteria. Therefore, the DBS/MAE/CE-TOF-MS method was successfully checked for analysis of ketamine in matrices other than blood, i.e., rose wine and orange juice. Moreover, it is possible to identify ketamine in the presence of flunitrazepam, which is the other most popular ingredient used in DRP. Based on this information, the selectivity of the proposed methodology for identifying ketamine in the presence of other components of rape pills was checked.


Author(s):  
Yufei Feng ◽  
Lin Teng ◽  
Yanli Wang ◽  
Yanyu Gao ◽  
Yuxuan Ma ◽  
...  

Abstract This research explored the HPLC fingerprints of Hypericum attenuatum Choisy, which has anti-arrhythmic activity. HPLC was adopted to perform a determination of chemical fingerprints of H. attenuatum specimens acquired through seven distinct sources. The anti-arrhythmic activity of each H. attenuatum sample was obtained through pharmacodynamics experiments in animals. A regression analysis and correlation analysis were utilized to calculate the relationship of the peak and pharmacological effectiveness with the identified peak. Peaks numbered 5, 7, 13 and 14 in the fingerprint were regarded as the likely anti-arrhythmic agents. The fingerprint was compared with reference standards for identification of the correlative peaks. Liquid chromatography–time-of-flight–mass spectrometry was applied to identify its structure. As a consequence, a universal model was established for the utilization of HPLC to investigate anti-arrhythmic activity and the spectrum-effect relationship among H. attenuatum. This model is available for the discovery of the major bioactive constituents of Hypericum.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Nan Zhan ◽  
Feng Guo ◽  
Shuai Zhu ◽  
Zhu Rao

Short-chain chlorinated paraffins (SCCPs) are a new type of persistent organic pollutants. In this work, a simple and effective method involving headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF-MS) was developed and optimized for the determination of trace SCCPs in water samples. The key parameters related to extraction and separation efficiency were systematically optimized. The SCCP congener groups were best resolved using an Rxi-5Sil MS (30 m × 0.25 mm × 0.25 µm) column followed by an Rxi-17Sil MS (1.0 m × 0.15 mm × 0.15 µm) column; the optimum extraction conditions were achieved with a 100 µm polydimethylsiloxane SPME fiber, when a 10 mL water sample added with 3.6 g sodium chloride was incubated for 15 min at 90°C and then extracted during 60 min at 90°C and desorption at 260°C for 2 min. The proposed method showed good linearity in the concentration range of 0.2–20.0 µg/L with the determination coefficient greater than 0.995. The detection and quantification limits ranged from 0.06 to 0.13 µg/L and 0.18 to 0.40 µg/L, respectively, which are sufficient to meet the regulatory detection limits as set by most environmental regulations. The accuracy and precision of the method was also good, where the recoveries ranged from 82.5 to 95.4%, and intra- and interday precision was within 7.2% and 14.5%, respectively. The optimized method has been applied to the determination of SCCPs in ten freshwater samples of three different types.


Sign in / Sign up

Export Citation Format

Share Document