scholarly journals In Vitro and In Vivo Antibacterial Activity of Gliotoxin Alone and in Combination with Antibiotics against Staphylococcus aureus

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 85
Author(s):  
Patricia Esteban ◽  
Sergio Redrado ◽  
Laura Comas ◽  
M. Pilar Domingo ◽  
M. Isabel Millán-Lou ◽  
...  

Multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) is one of the major causes of hospital-acquired and community infections and pose a challenge to the human health care system. Therefore, it is important to find new drugs that show activity against these bacteria, both in monotherapy and in combination with other antimicrobial drugs. Gliotoxin (GT) is a mycotoxin produced by Aspergillus fumigatus and other fungi of the Aspergillus genus. Some evidence suggests that GT shows antimicrobial activity against S. aureus in vitro, albeit its efficacy against multidrug-resistant strains such as MRSA or vancomycin-intermediate S. aureus (VISA) strainsis not known. This work aimed to evaluate the antibiotic efficacy of GT as monotherapy or in combination with other therapeutics against MRSA in vitro and in vivo using a Caenorhabditis elegans infection model.

2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Ying Sun ◽  
Xueyuan Liao ◽  
Zhigang Huang ◽  
Yaliu Xie ◽  
Yanbin Liu ◽  
...  

ABSTRACT This study aimed to evaluate the antimicrobial activity of the novel monosulfactam 0073 against multidrug-resistant Gram-negative bacteria in vitro and in vivo and to characterize the mechanisms underlying 0073 activity. The in vitro activities of 0073, aztreonam, and the combination with avibactam were assessed by MIC and time-kill assays. The safety of 0073 was evaluated using 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and acute toxicity assays. Murine thigh infection and pneumonia models were employed to define in vivo efficacy. A penicillin-binding protein (PBP) competition assay and confocal microscopy were conducted. The inhibitory action of 0073 against β-lactamases was evaluated by the half-maximal inhibitory concentration (IC50), and resistance development was evaluated via serial passage. The monosulfactam 0073 showed promising antimicrobial activity against Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates producing metallo-β-lactamases (MBLs) and serine β-lactamases. In preliminary experiments, compound 0073 exhibited safety both in vitro and in vivo. In the murine thigh infection model and the pneumonia models in which infection was induced by P. aeruginosa and Klebsiella pneumoniae, 0073 significantly reduced the bacterial burden. Compound 0073 targeted several PBPs and exerted inhibitory effects against some serine β-lactamases. Finally, 0073 showed a reduced propensity for resistance selection compared with that of aztreonam. The novel monosulfactam 0073 exhibited increased activity against β-lactamase-producing Gram-negative organisms compared with the activity of aztreonam and showed good safety profiles both in vitro and in vivo. The underlying mechanisms may be attributed to the affinity of 0073 for several PBPs and its inhibitory activity against some serine β-lactamases. These data indicate that 0073 represents a potential treatment for infections caused by β-lactamase-producing multidrug-resistant bacteria.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Cory A. Leonard ◽  
Stacy D. Brown ◽  
J. Russell Hayman

Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis ofAspergillus oryzaewould result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individualA. oryzaemutants that inhibit the growth of Methicillin-resistantStaphylococcus aureus(MRSA)in vitro. To randomly generateA. oryzaemutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treatedA. oryzaecultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitiveStaphylococcus aureus, MRSA, andPseudomonas aeruginosa, but notKlebsiella pneumoniaorProteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis ofA. oryzae. Because the genome ofA. oryzaehas been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system.


2007 ◽  
Vol 51 (9) ◽  
pp. 3416-3419 ◽  
Author(s):  
Mick M. Welling ◽  
Carlo P. J. M. Brouwer ◽  
Wim van ′t Hof ◽  
Enno C. I. Veerman ◽  
Arie V. Nieuw Amerongen

ABSTRACT Homodimerization of histatin-derived peptides generally led to improved bactericidal activity against Staphylococcus aureus in vitro. In vivo, monomers and dimers were equally active in killing bacteria in mice with a soft tissue infection. Altogether, these peptides are promising compounds for the development of novel therapeutics against infections with drug-resistant bacteria.


2020 ◽  
Vol 15 (3) ◽  
pp. 193-206
Author(s):  
Brognara Lorenzo ◽  
Salmaso Luca ◽  
Mazzotti Antonio ◽  
Di M. Alberto ◽  
Faldini Cesare ◽  
...  

Background: Chronic wounds are commonly associated with polymicrobial biofilm infections. In the last years, the extensive use of antibiotics has generated several antibiotic-resistant variants. To overcome this issue, alternative natural treatments have been proposed, including the use of microorganisms like probiotics. The aim of this manuscript was to review current literature concerning the application of probiotics for the treatment of infected chronic wounds. Methods: Relevant articles were searched in the Medline database using PubMed and Scholar, using the keywords “probiotics” and “wound” and “injuries”, “probiotics” and “wound” and “ulcer”, “biofilm” and “probiotics” and “wound”, “biofilm” and “ulcer” and “probiotics”, “biofilm” and “ulcer” and “probiotics”, “probiotics” and “wound”. Results: The research initially included 253 articles. After removal of duplicate studies, and selection according to specific inclusion and exclusion criteria, 19 research articles were included and reviewed, accounting for 12 in vitro, 8 in vivo studies and 2 human studies (three articles dealing with animal experiments included also in vitro testing). Most of the published studies about the effects of probiotics for the treatment of infected chronic wounds reported a partial inhibition of microbial growth, biofilm formation and quorum sensing. Discussion: The application of probiotics represents an intriguing option in the treatment of infected chronic wounds with multidrug-resistant bacteria; however, current results are difficult to compare due to the heterogeneity in methodology, laboratory techniques, and applied clinical protocols. Lactobacillus plantarum currently represents the most studied strain, showing a positive application in burns compared to guideline treatments, and an additional mean in chronic wound infections. Conclusions: Although preliminary evidence supports the use of specific strains of probiotics in certain clinical settings such as infected chronic wounds, large, long-term clinical trials are still lacking, and further research is needed.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Bing Yuan ◽  
Jiaojiao Liu ◽  
Zhixiong Deng ◽  
Lin Wei ◽  
Wenwen Li ◽  
...  

AbstractAddressing the devastating threat of drug-resistant pathogens requires the discovery of new antibiotics with advanced action mechanisms and/or novel strategies for drug design. Herein, from a biophysical perspective, we design a class of synthetic antibacterial complexes with specialized architectures based on melittin (Mel), a natural antimicrobial peptide, and poly(ethylene glycol) (PEG), a clinically available agent, as building blocks that show potent and architecture-modulated antibacterial activity. Among the complexes, the flexibly linear complex consisting of one Mel terminally connected with a long-chained PEG (e.g., PEG12k–1*Mel) shows the most pronounced improvement in performance compared with pristine Mel, with up to 500% improvement in antimicrobial efficiency, excellent in vitro activity against multidrug-resistant pathogens (over a range of minimal inhibitory concentrations of 2–32 µg mL−1), a 68% decrease in in vitro cytotoxicity, and a 57% decrease in in vivo acute toxicity. A lipid-specific mode of action in membrane recognition and an accelerated “channel” effect in perforating the bacterial membrane of the complex are described. Our results introduce a new way to design highly efficient and low-toxicity antimicrobial drugs based on architectural modulations with clinically available agents.


Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Dalila Mil-Homens ◽  
Maria Martins ◽  
José Barbosa ◽  
Gabriel Serafim ◽  
Maria J. Sarmento ◽  
...  

Klebsiella pneumoniae, one of the most common pathogens found in hospital-acquired infections, is often resistant to multiple antibiotics. In fact, multidrug-resistant (MDR) K. pneumoniae producing KPC or OXA-48-like carbapenemases are recognized as a serious global health threat. In this sense, we evaluated the virulence of K. pneumoniae KPC(+) or OXA-48(+) aiming at potential antimicrobial therapeutics. K. pneumoniae carbapenemase (KPC) and the expanded-spectrum oxacillinase OXA-48 isolates were obtained from patients treated in medical care units in Lisbon, Portugal. The virulence potential of the K. pneumonia clinical isolates was tested using the Galleria mellonella model. For that, G. mellonella larvae were inoculated using patients KPC(+) and OXA-48(+) isolates. Using this in vivo model, the KPC(+) K. pneumoniae isolates showed to be, on average, more virulent than OXA-48(+). Virulence was found attenuated when a low bacterial inoculum (one magnitude lower) was tested. In addition, we also report the use of a synthetic polycationic oligomer (L-OEI-h) as a potential antimicrobial agent to fight infectious diseases caused by MDR bacteria. L-OEI-h has a broad-spectrum antibacterial activity and exerts a significantly bactericidal activity within the first 5-30 min treatment, causing lysis of the cytoplasmic membrane. Importantly, the polycationic oligomer showed low toxicity against in vitro models and no visible cytotoxicity (measured by survival and health index) was noted on the in vivo model (G. mellonella), thus L-OEI-h is foreseen as a promising polymer therapeutic for the treatment of MDR K. pneumoniae infections.


2017 ◽  
Vol 63 (10) ◽  
pp. 857-863 ◽  
Author(s):  
Maria S. Stietz ◽  
Christina Lopez ◽  
Osasumwen Osifo ◽  
Marcelo E. Tolmasky ◽  
Silvia T. Cardona

There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.


2014 ◽  
Vol 83 (3) ◽  
pp. 1019-1029 ◽  
Author(s):  
Julienne C. Kaiser ◽  
Sameha Omer ◽  
Jessica R. Sheldon ◽  
Ian Welch ◽  
David E. Heinrichs

The branched-chain amino acids (BCAAs; Ile, Leu, and Val) not only are important nutrients for the growth ofStaphylococcus aureusbut also are corepressors for CodY, which regulates virulence gene expression, implicating BCAAs as an important link between the metabolic state of the cell and virulence. BCAAs are either synthesized intracellularly or acquired from the environment.S. aureusencodes three putative BCAA transporters, designated BrnQ1, BrnQ2, and BrnQ3; their functions have not yet been formally tested. In this study, we mutated all threebrnQparalogs so as to characterize their substrate specificities and their roles in growthin vitroandin vivo. We demonstrated that in the community-associated, methicillin-resistantS. aureus(CA-MRSA) strain USA300, BrnQ1 is involved in uptake of all three BCAAs, BrnQ2 transports Ile, and BrnQ3 does not have a significant role in BCAA transport under the conditions tested. Of the three, only BrnQ1 is essential for USA300 to grow in a chemically defined medium that is limited for Leu or Val. Interestingly, we observed that abrnQ2mutant grew better than USA300 in media limited for Leu and Val, owing to the fact that this mutation leads to overexpression ofbrnQ1. In a murine infection model, thebrnQ1mutant was attenuated, but in contrast,brnQ2mutants had significantly increased virulence compared to that of USA300, a phenotype we suggest is at least partially linked to enhancedin vivoscavenging of Leu and Val through BrnQ1. These data uncover a hitherto-undiscovered connection between nutrient acquisition and virulence in CA-MRSA.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Melanie Roch ◽  
Maria Celeste Varela ◽  
Agustina Taglialegna ◽  
Warren E. Rose ◽  
Adriana E. Rosato

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) acquisition in cystic fibrosis (CF) patients confers a clinical outcome worse than that in non-CF patients with an increased rate of declined lung function. Telavancin, an approved lipoglycopeptide used to treat infections due to S. aureus, has a dual mode of action causing inhibition of peptidoglycan synthesis and membrane depolarization. MRSA infections in CF patients remain an important problem with no foreseeable decline in prevalence rates. Although telavancin is currently in clinical use for the treatment of complicated skin infections and hospital-acquired pneumonia, the activity against S. aureus infections in CF patients has not been investigated. In this work, we studied the activity of telavancin against CF patient-derived S. aureus strains collected from geographically diverse CF centers in the United States. We found that the telavancin MIC90 was 0.06 μg/ml, 8-fold lower than the ceftaroline or daptomycin MIC90 and 25-fold lower than the linezolid and vancomycin MIC90. We demonstrate that telavancin at serum free concentrations has rapid bactericidal activity, with a decrease of more than 3 log10 CFU/ml being achieved during the first 4 to 6 h of treatment, performing better in this assay than vancomycin and ceftaroline, including against S. aureus strains resistant to ceftaroline. Telavancin resistance was infrequent (0.3%), although we found that it can occur in vitro in both CF- and non-CF patient-derived S. aureus strains by progressive passages with subinhibitory concentrations. Genetic analysis of telavancin-resistant in vitro mutants showed gene polymorphisms in cell wall and virulence genes and increased survival in a Galleria mellonella infection model. Thus, we conclude that telavancin represents a promising therapeutic option for infections in CF patients with potent in vitro activity and a low resistance development potential.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1481
Author(s):  
John Jairo Aguilera-Correa ◽  
Sara Fernández-López ◽  
Iskra Dennisse Cuñas-Figueroa ◽  
Sandra Pérez-Rial ◽  
Hanna-Leena Alakomi ◽  
...  

Staphylococcus aureus is the most common cause of surgical site infections and its treatment is challenging due to the emergence of multi-drug resistant strains such as methicillin-resistant S. aureus (MRSA). Natural berry-derived compounds have shown antimicrobial potential, e.g., ellagitannins such as sanguiin H-6 and lambertianin C, the main phenolic compounds in Rubus seeds, have shown antimicrobial activity. The aim of this study was to evaluate the effect of sanguiin H-6 and lambertianin C fractionated from cloudberry seeds, on the MRSA growth, and as treatment of a MRSA biofilm development in different growth media in vitro and in vivo by using a murine wound infection model where sanguiin H-6 and lambertianin C were used to prevent the MRSA infection. Sanguiin H-6 and lambertianin C inhibited the in vitro biofilm development and growth of MRSA. Furthermore, sanguiin H-6 showed significant anti-MRSA effect in the in vivo wound model. Our study shows the possible use of sanguiin H-6 as a preventive measure in surgical sites to avoid postoperative infections, whilst lambertianin C showed no anti-MRSA activity.


Sign in / Sign up

Export Citation Format

Share Document