scholarly journals Black Holes and Complexity via Constructible Universe

Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 198
Author(s):  
Jerzy Król ◽  
Paweł Klimasara

The relation of randomness and classical algorithmic computational complexity is a vast and deep subject by itself. However, already, 1-randomness sequences call for quantum mechanics in their realization. Thus, we propose to approach black hole’s quantum computational complexity by classical computational classes and randomness classes. The model of a general black hole is proposed based on formal tools from Zermelo–Fraenkel set theory like random forcing or minimal countable constructible model Lα. The Bekenstein–Hawking proportionality rule is shown to hold up to a multiplicative constant. Higher degrees of randomness and algorithmic computational complexity are derived in the model. Directions for further studies are also formulated. The model is designed for exploring deep quantum regime of spacetime.

2020 ◽  
Vol 29 (11) ◽  
pp. 17-25
Author(s):  
Sang-Heon YI ◽  
Dong-han YEOM

In this article, we discuss the information loss problem of black holes and critically review candidate resolutions of the problem. As a black hole evaporates via Hawking radiation, it seems to lose original quantum information; this indicates that the unitarity of time evolution in quantum mechanics and the fundamental predictability of physics are lost. We categorized candidate resolutions by asking (1) where information is and (2) which principle of physics is changed. We also briefly comment on the recent progress in the string theory community. Finally, we present several remarks for future perspectives.


Author(s):  
John W. Moffat

A major question confronting physicists studying black holes was whether thermodynamics applied to them—that is, whether the black holes radiated heat and lost energy. Bekenstein considered heat and thermodynamics important for the interior of black holes. Based on the second law of thermodynamics, Hawking proposed that black holes evaporate over a very long time through what we now call Hawking radiation. This concept contradicts the notion that nothing can escape a black hole event horizon. Quantum physics enters into Hawking’s calculations, and he discovered the conundrum that the radiation would violate quantum mechanics, leading to what is called the information loss problem. These ideas are still controversial, and many physicists have attempted to resolve them, including Russian theorists Zel’dovich and Starobinsky. Alternative quantum physics interpretations of black holes have been proposed that address the thermodynamics problems, including so-called gravastars.


Author(s):  
V. P. Neznamov

It is proved that coordinate transformations of the Schwarzschild metric to new static and stationary metrics do not eliminate the mode of a particle “fall” to the event horizon of a black hole. This mode is unacceptable for the quantum mechanics of stationary states.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 301
Author(s):  
Lawrence Crowell ◽  
Christian Corda

Black hole (BH) collisions produce gravitational radiation which is generally thought, in a quantum limit, to be gravitons. The stretched horizon of a black hole contains quantum information, or a form of quantum hair, which is a coalescence of black holes participating in the generation of gravitons. This may be facilitated with a Bohr-like approach to black hole (BH) quantum physics with quasi-normal mode (QNM) approach to BH quantum mechanics. Quantum gravity and quantum hair on event horizons is excited to higher energy in BH coalescence. The near horizon condition for two BHs right before collision is a deformed A d S spacetime. These excited states of BH quantum hair then relax with the production of gravitons. This is then argued to define RT entropy given by quantum hair on the horizons. These qubits of information from a BH coalescence should then appear in gravitational wave (GW) data.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2229-2230
Author(s):  
TATSUO AZEYANAGI

We holographically derive entropy of (near) extremal black holes as entanglement entropy of conformal quantum mechanics(CQM) living in two boundaries of AdS2.


1996 ◽  
Vol 05 (06) ◽  
pp. 665-678
Author(s):  
G. KUNSTATTER

We review some recent work concerning the classical thermodynamics and quantum mechanics of charged black holes in generic 2-D dilaton gravity. The main result that has emerged from this work is an intriguing connection between the classical black hole entropy and the imaginary part of the WKB phase of energy and charge eigenstates in the corresponding quantum theory.


1997 ◽  
Vol 06 (01) ◽  
pp. 57-68 ◽  
Author(s):  
Pedro F. González-Díaz

By allowing the light cones to tip over on hypersurfaces according to the conservation laws of an one-kink in static, Schwarzschild black-hole metric, we show that in the quantum regime there also exist instantons whose finite imaginary action gives the probability of occurrence of the kink metric corresponding to single chargeless, nonrotating black holes taking place in pairs, the holes of each pair being joined on an interior surface, beyond the horizon.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Guillaume BEAUJARD ◽  
Swapnamay Mondal ◽  
Boris Pioline

The Coulomb Branch Formula conjecturally expresses the refined Witten index for N=4 Quiver Quantum Mechanics as a sum over multi-centered collinear black hole solutions, weighted by so-called `single-centered' or `pure-Higgs' indices, and suitably modified when the quiver has oriented cycles. On the other hand, localization expresses the same index as an integral over the complexified Cartan torus and auxiliary fields, which by Stokes' theorem leads to the famous Jeffrey-Kirwan residue formula. Here, by evaluating the same integral using steepest descent methods, we show the index is in fact given by a sum over deformed multi-centered collinear solutions, which encompasses both regular and scaling collinear solutions. As a result, we confirm the Coulomb Branch Formula for Abelian quivers in the presence of oriented cycles, and identify the origin of the pure-Higgs and minimal modification terms as coming from collinear scaling solutions. For cyclic Abelian quivers, we observe that part of the scaling contributions reproduce the stacky invariants for trivial stability, a mathematically well-defined notion whose physics significance had remained obscure.


Author(s):  
Purujit Malik

A black hole is a region of space from which nothing, not even light, can escape. According to the general theory of relativity[2], it starts existing when spacetime gets curved by a huge mass. There is a sphere around the black hole. If something goes inside the sphere, it can not leave. This sphere is called the event horizon. A black hole is black because it absorbs all the light that hits it. It reflects nothing, just like a perfect black body in thermodynamics. Under quantum mechanics, black holes have a temperature and emit Hawking radiation, which makes them slowly get smaller.Because black holes are very hard to see, people trying to see them look for them by the way they affect other things near them. The place where there is a black hole can be found by tracking the movement of stars that orbit somewhere in space. Or people can find it when gas falls into a black hole, because the gas heats up and is very bright[1].However besides all these theories we still do not know what a black hole and dark matter is because all these theories rely on the much physical aspect of things and not on a unified understanding of creation.


1998 ◽  
Vol 13 (17) ◽  
pp. 1407-1411 ◽  
Author(s):  
RAMZI R. KHURI

Quantum aspects of black holes represent an important testing ground for a theory of quantum gravity. The recent success of string theory in reproducing the Bekenstein–Hawking black hole entropy formula provides a link between general relativity and quantum mechanics via thermodynamics and statistical mechanics. Here we speculate on the existence of new and unexpected links between black holes and polymers and other soft-matter systems.


Sign in / Sign up

Export Citation Format

Share Document