BLACK HOLE ENTROPY AND QUANTUM MECHANICS IN GENERIC 2-D DILATON GRAVITY

1996 ◽  
Vol 05 (06) ◽  
pp. 665-678
Author(s):  
G. KUNSTATTER

We review some recent work concerning the classical thermodynamics and quantum mechanics of charged black holes in generic 2-D dilaton gravity. The main result that has emerged from this work is an intriguing connection between the classical black hole entropy and the imaginary part of the WKB phase of energy and charge eigenstates in the corresponding quantum theory.

2007 ◽  
Vol 22 (26) ◽  
pp. 4849-4858 ◽  
Author(s):  
A. SHEYKHI ◽  
N. RIAZI

We consider charged black holes with curved horizons, in five-dimensional dilaton gravity in the presence of Liouville-type potential for the dilaton field. We show how, by solving a pair of coupled differential equations, infinitesimally small angular momentum can be added to these static solutions to obtain charged rotating dilaton black hole solutions. In the absence of dilaton field, the nonrotating version of the solution reduces to the five-dimensional Reissner–Nordström black hole, and the rotating version reproduces the five-dimensional Kerr–Newman modification thereof for small rotation parameter. We also compute the angular momentum and the angular velocity of these rotating black holes which appear at the first order.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2229-2230
Author(s):  
TATSUO AZEYANAGI

We holographically derive entropy of (near) extremal black holes as entanglement entropy of conformal quantum mechanics(CQM) living in two boundaries of AdS2.


2014 ◽  
Vol 29 (13) ◽  
pp. 1450079
Author(s):  
Jun-Jin Peng ◽  
Qing-Ping Hu

We study microscopic entropy of the near-extremal rotating black hole in four-dimensional (4D) 𝒩 = 2 supergravity with four charges set pairwise equal from AdS2/CFT1 correspondence. This correspondence is realized in terms of asymptotic symmetries of the AdS2 geometry and a two-dimensional near-horizon effective quantum theory of residual fields from a dimensional reduction proposed by Robinson and Wilczek. We compute the relevant central charge and derive the microscopic entropy of this near-extremal black hole by Cardy formula. Our results can be extended to more general near-extremal rotating black holes in 4D supergravity. They further support the notion that black hole entropy is generally controlled by near-horizon conformal symmetry.


2009 ◽  
Vol 18 (11) ◽  
pp. 1773-1783 ◽  
Author(s):  
A. SHEYKHI ◽  
H. ALAVIRAD

We derive a new analytic solution of (n + 1)-dimensional (n ≥ 4) Brans–Dicke–Maxwell theory in the presence of a potential for the scalar field, by applying a conformal transformation to the dilaton gravity theory. Such solutions describe topological charged black holes with unusual asymptotics. We obtain the conserved and thermodynamic quantities through the use of the Euclidean action method. We also study the thermodynamics of the solutions and verify that the conserved and thermodynamic quantities of the solutions satisfy the first law of black hole thermodynamics.


1998 ◽  
Vol 13 (17) ◽  
pp. 1407-1411 ◽  
Author(s):  
RAMZI R. KHURI

Quantum aspects of black holes represent an important testing ground for a theory of quantum gravity. The recent success of string theory in reproducing the Bekenstein–Hawking black hole entropy formula provides a link between general relativity and quantum mechanics via thermodynamics and statistical mechanics. Here we speculate on the existence of new and unexpected links between black holes and polymers and other soft-matter systems.


2006 ◽  
Vol 15 (12) ◽  
pp. 2181-2185 ◽  
Author(s):  
RODOLFO GAMBINI ◽  
RAFAEL A. PORTO ◽  
JORGE PULLIN

Unitarity is a pillar of quantum theory. Nevertheless, it is also a source of several of its conceptual problems. We note that in a world where measurements are relational, as is the case in gravitation, quantum mechanics exhibits a fundamental level of loss of coherence. This can be the key to solving, among others, the puzzles posed by the black hole information paradox, the formation of inhomogeneities in cosmology and the measurement problem in quantum mechanics.


2011 ◽  
Vol 26 (30) ◽  
pp. 2299-2304 ◽  
Author(s):  
XIAO-GANG HE ◽  
BO-QIANG MA

We show that black holes can be quantized in an intuitive and elegant way with results in agreement with conventional knowledge of black holes by using Bohr's idea of quantizing the motion of an electron inside the atom in quantum mechanics. We find that properties of black holes can also be derived from an ansatz of quantized entropy [Formula: see text], which was suggested in a previous work to unify the black hole entropy formula and Verlinde's conjecture to explain gravity as an entropic force. Such an Ansatz also explains gravity as an entropic force from quantum effect. This suggests a way to unify gravity with quantum theory. Several interesting and surprising results of black holes are given from which we predict the existence of primordial black holes ranging from Planck scale both in size and energy to big ones in size but with low energy behaviors.


2004 ◽  
Vol 13 (07) ◽  
pp. 1375-1379 ◽  
Author(s):  
MANUEL MALHEIRO ◽  
RODRIGO PICANÇO ◽  
SUBHARTHI RAY ◽  
JOSÉ P. S. LEMOS ◽  
VILSON T. ZANCHIN

Effect of maximum amount of charge a compact star can hold, is studied here. We analyze the different features in the renewed stellar structure and discuss the reasons why such huge charge is possible inside a compact star. We studied a particular case of a polytropic equation of state (EOS) assuming the charge density is proportional to the mass density. Although the global balance of force allows a huge charge, the electric repulsion faced by each charged particle forces it to leave the star, resulting in the secondary collapse of the system to form a charged black hole.


1995 ◽  
Vol 10 (28) ◽  
pp. 2081-2093 ◽  
Author(s):  
ASHOKE SEN

Some of the extremal black hole solutions in string theory have the same quantum numbers as the Bogomol’nyi saturated elementary string states. We explore the possibility that these black holes can be identified with elementary string excitations. It is shown that stringy effects could correct the Bekenstein-Hawking formula for the black hole entropy in such a way that it correctly reproduces the logarithm of the density of elementary string states. In particular, this entropy has the correct dependence on three independent parameters, the mass and the left-handed charge of the black hole, and the string coupling constant.


Author(s):  
L. C. Garcia de Andrade

The issue of encoding physical information into metric structure of physical theories has been discussed recently by the author in the case of black hole teleparallelism. In this paper, one obtains a teleparallel chiral currents from quantum anomalies and topological torsional invariants of Nieh-Yan type. The Pontryagin index is also obtained in the case of rotating Kerr spacetime metric of non-static black holes. Magnetic monopoles which appears in this approach can be eliminated by a torsion constraint. These ideas are applied to Kerr and Kerr–Newmann charged black holes.


Sign in / Sign up

Export Citation Format

Share Document