scholarly journals Application of Neural Networks to Classification of Data of the TUS Orbital Telescope

Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 221
Author(s):  
Mikhail Zotov

We employ neural networks for classification of data of the TUS fluorescence telescope, the world’s first orbital detector of ultra-high energy cosmic rays. We focus on two particular types of signals in the TUS data: track-like flashes produced by cosmic ray hits of the photodetector and flashes that originated from distant lightnings. We demonstrate that even simple neural networks combined with certain conventional methods of data analysis can be highly effective in tasks of classification of data of fluorescence telescopes.

2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


2005 ◽  
Vol 20 (06) ◽  
pp. 419-440 ◽  
Author(s):  
HOURI ZIAEEPOUR

In a previous work1 we have studied the propagation of relativistic particles in the bulk for some of the most popular brane models. Constraints have been put on the parameter space of these models by calculating the time delay due to propagation in the bulk of particles created during the interaction of Ultra High Energy Cosmic Rays (UHECRs) with protons in the terrestrial atmosphere. The question was, however, raised that probability of hard processes in which bulk modes can be produced is small and consequently, the tiny flux of UHECRs cannot constrain brane models. Here we use Color Glass Condensate (CGC) model to show that effects of extra dimensions are visible not only in hard processes when the incoming photon/parton hits a massive Kaluza–Klein mode but also through the modification of soft/semi-hard parton distribution. At classical level, for an observer in the CM frame of UHECR and atmospheric hadrons, color charge sources are contracted to a thin sheet with a width inversely proportional to the energy of the ultra energetic cosmic ray hadron and consequently they can see an extra dimension with comparable size. Due to QCD interaction, a short life swarm of partons is produced in front of the sheet and its partons can penetrate to the extra-dimension bulk. This reduces the effective density of partons on the brane or in a classical view creates a delay in the arrival of the most energetic particles if they are reflected back due to the warping of the bulk. In CGC approximation the density of swarm at different distances from the classical sheet can be related and therefore it is possible (at least formally) to determine the relative fraction of partons in the bulk and on the brane at different scales. Results of this work are also relevant to the test of brane models in hadron colliders like LHC.


2006 ◽  
Vol 21 (supp01) ◽  
pp. 192-196 ◽  
Author(s):  
D. ARDOUIN ◽  
A. BELLETOILE ◽  
D. CHARRIER ◽  
R. DALLIER ◽  
L. DENIS ◽  
...  

The CODALEMA experimental device currently detects and characterizes the radio contribution of cosmic ray air showers : arrival directions and electric field topologies of radio transient signals associated to cosmic rays are extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.1016eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of Ultra High Energy Cosmic Rays at a larger scale.


2019 ◽  
Vol 210 ◽  
pp. 04004
Author(s):  
Martin Erdmann ◽  
Lukas Geiger ◽  
David Schmidt ◽  
Martin Urban ◽  
Marcus Wirtz

We present a novel approach to search for origins of ultra-high energy cosmic rays. In a simultaneous fit to all observed cosmic rays we use the galactic magnetic field as a mass spectrometer and adapt the nuclear charges such that their extragalactic arrival directions are concentrated in as few directions as possible. During the fit the nuclear charges are constraint by the individual energy and shower depth measurements. We show in a simulated astrophysical scenario that source directions can be reconstructed even within a substantial isotropic background.


2010 ◽  
Vol 25 (18) ◽  
pp. 1467-1481 ◽  
Author(s):  
TODOR STANEV

We introduce the highest energy cosmic rays and briefly review the powerful astrophysical objects where they could be accelerated. We then introduce the interactions of different cosmic ray particles with the photon fields of the Universe and the formation of the cosmic ray spectra observed at Earth. The last topic is the production of secondary gamma rays and neutrinos in the interactions of the ultrahigh energy cosmic rays.


Open Physics ◽  
2004 ◽  
Vol 2 (2) ◽  
Author(s):  
Tadeusz Wibig

AbstractIn this paper we will discuss the problem of Ultra High Energy Cosmic Rays (UHECR) and show that the idea of a Single Source Model established by Erlykin and Wolfendale (1997) to explain the features seen in cosmic ray energy spectra around the 1015 eV region can be successfully applied also for the much higher energies. The propagation of UHECR (of energies higher than 1019 eV) in extragalactic magnetic fields can no longer be described as a random walk (diffusion) process and the transition to rectilinear propagation gives a possible explanation for the so-called Greisen-Zatzepin-Kuzmin (GZK) cut-off which still remains an open question after almost 40 years. A transient “single source” located at a particular distance and producing UHECR for a finite time is the proposed solution.


2009 ◽  
Vol 18 (10) ◽  
pp. 1577-1581 ◽  
Author(s):  
P. L. BIERMANN ◽  
J. K. BECKER ◽  
L. CARAMETE ◽  
L. GERGELY ◽  
I. C. MARIŞ ◽  
...  

Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.


2018 ◽  
Vol 182 ◽  
pp. 02122
Author(s):  
Ryuji Takeishi

The origin of ultra-high energy cosmic rays (UHECRs) has been a longstanding mystery. The Telescope Array (TA) is the largest experiment in the northern hemisphere observing UHECR in Utah, USA. It aims to reveal the origin of UHECR by studying the energy spectrum, mass composition and anisotropy of cosmic rays. TA is a hybrid detector comprised of three air fluorescence stations which measure the fluorescence light induced from cosmic ray extensive air showers, and 507 surface scintillator counters which sample charged particles from air showers on the ground. We present the cosmic ray spectrum observed with the TA experiment. We also discuss our results from measurement of the mass composition. In addition, we present the results from the analysis of anisotropy, including the excess of observed events in a region of the northern sky at the highest energy. Finally, we introduce the TAx4 experiment which quadruples TA, and the TA low energy extension (TALE) experiment.


Sign in / Sign up

Export Citation Format

Share Document