scholarly journals Using Multi-Sensory and Multi-Dimensional Immersive Virtual Reality in Participatory Planning

Urban Science ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 34
Author(s):  
Mahbubur Meenar ◽  
Jennifer Kitson

In the last two decades, urban planners have embraced digital technologies to complement traditional public participation processes; research on the impact of smarter digital instruments, such as immersive virtual reality (IVR), however, is scant. We recruited 40 focus group participants to explore various formats of spatial planning scenario simulations in Glassboro, NJ, USA. Our study finds that the level of participation, memory recalls of scenarios, and emotional responses to design proposals are higher with multi-sensory and multi-dimensional IVR simulations than with standard presentations such as 2D videos of 3D model simulations, coupled with verbal presentations. We also discuss the limitations of IVR technology to assist urban planning practitioners in evaluating its potential in their own participatory planning efforts.

2021 ◽  
Vol 10 ◽  
pp. BB24-BB39
Author(s):  
Hannah Fleming

This article investigates the impact of digital technologies on the production of life writing texts and media for and by young adults. Five categories in total are examined: (i) Fan Fiction, (ii) life simulator games, (iii) SNS (social networking sites), (iv) VR (virtual reality) documentaries and (v) Webtoons. The article begins by synthesising numerous critical studies on children’s and digital life writing, before analysing two IVR (immersive virtual reality) documentaries in depth. It concludes by discussing the relationship between these on-the-go, online and immersive VR modes and fantasised futures, narratives of extremity and the slice of life genre.


Author(s):  
Pablo Gobira ◽  
Antônio Mozelli

This paper aims to report the experience and challenges of the research group Laboratory of Front Poetics (LabFront, CNPq/UEMG) in exhibiting an immersive virtual reality installation during events and festivals of digital arts in Brazil. In this article, questions are raised regarding traditional exhibition processes and those where digital technologies are used. Although our focus is on the Brazilian context, similar difficulties and problems in exhibition design can be seen in other places, such as Latin American and European countries. We will base the discussion on our experience of exhibiting Olhe para você (2016) [Look at yourself], an immersive virtual reality work developed by one of the teams of the research group LabFront.


Author(s):  
Elizabeth M. Starkey ◽  
Cailyn Spencer ◽  
Kevin Lesniak ◽  
Conrad Tucker ◽  
Scarlett R. Miller

Recent shifts into larger class sizes and online learning have caused engineering educators to rethink the way they integrate inductive, or active learning activities into their courses. One way engineering educators have done this is through the integration of new technological environments. However, little is known about how the type of technological environment utilized in active learning exercises impacts student learning and satisfaction. Thus, as a first step to understanding the impact of technological advancements on student learning and satisfaction, a study was conducted with 18 senior level undergraduate engineering students who were asked to perform product dissection, or the systematic disassembly of a product, using three technological interfaces (computer, iPad, immersive virtual reality). Variations in the complexity of the product dissected were also explored. The results of this study indicate that variations in technological interfaces did not impact student learning as assessed by a Student Learning Assessment (SLA). However, the complexity of the product dissected did impact learning, with students scoring significantly lower on the SLA when dissecting the most complex product. The results also indicated that students perceived learning and satisfaction were highest when using the immersive virtual reality system. These results suggest that the costs of investing in more technological advanced systems for product dissection may not yet outweigh the educational benefits. However, the increase in student satisfaction with VR environments has the potential to positively impact student retention in engineering programs.


2021 ◽  
Author(s):  
Juan Ribeiro Reis ◽  
Thiago Sousa de Oliveira ◽  
Wesley Lopes de Oliveira ◽  
Diego Cordeiro Barboza ◽  
Leonildes Soares De Melo ◽  
...  

Abstract Human exposure is a relevant factor when operating in critical environments and depends on a thorough analysis and consideration towards driving the teams to a safer and more productive environment. Reducing such exposure through digital technologies benefits the whole workforce in their decisions and maneuvers, like simulations, training, and other critical activities that can be executed remotely and prior to the actual activity. This paper presents a case study to demonstrate how augmented and virtual reality can be used to create a high fidelity virtual environment emulating the real industrial facility. This approach enriches the Digital Twin with the association of data and the virtual environment. It leverages on display and interaction capabilities of hardware devices, and intelligence and data querying capabilities of industrial software, empowering the workers with enhanced training capabilities and access to information increasing safety and efficiency. A real application of this technology is presented in this paper through the case study of the PredictMain4.0 project of Repsol Sinopec Brazil (RSB), which aimed at the integration of digital technologies, including augmented reality (AR) and virtual reality (VR). The PredictMain4.0 project was executed using data and data models of PETROBRAS’ P-50, a FPSO (Floating Production Storage and Offloading) operating in Brazil, and illustrates how different AR/VR applications can be developed and used in combination with engineering, operation, and maintenance databases. This includes 3D models, digitalized critical procedures, and the ability to integrate field teams into a single virtual environment, allowing real interaction in a digital setting that is linked to the real world. Considering the digitalized procedures, this paper aims to establish how virtual simulation and training can make teams more confident and prepared to execute the same physical asset procedures. After consulting with stakeholders from many different teams, the PredictMain4.0 project team selected three critical operating modules in the FPSO (Power Generation, Water Injection, and Gas Compression). For each one, considered which situations were relevant, should they occur. These situations led to developing a training and simulation framework, allowing instructors to create different scenarios and use advanced features such as digital measurement, real-time data collection, and collaborative sessions. The case study indicates that the development of such applications can save more than $1 million per year in maintenance costs considering the decrease in downtime and avoiding risks of accident.


Sign in / Sign up

Export Citation Format

Share Document