scholarly journals Deficient Incorporation of Rabies Virus Glycoprotein into Virions Enhances Virus-Induced Immune Evasion and Viral Pathogenicity

Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 218 ◽  
Author(s):  
Chunfu Li ◽  
Hongliang Zhang ◽  
Lina Ji ◽  
Xiao Wang ◽  
Yongjun Wen ◽  
...  

Previous studies have shown that wild-type (wt) rabies virus (RABV) evades the host immune response by restricting expression of glycoprotein (G), which blocks activation of dendritic cells (DCs) and induces production of virus-neutralizing antibodies (VNAs). In the present study, wt RABVs not only restricted G expression but also reduced incorporation of G into mature virions compared with laboratory-adapted viruses. A recombinant RABV expressing triple G was used to further determine whether G expression relates to incorporation. The recombinant virus showed higher expression and incorporation of G and activated more DCs than the virus that expressed a single copy of G. Removal of G from viruses using subtilisin or Dithiothreitol (DTT)/ Nonidet P-40 (NP40) almost completely abolishes DC activation and VNA production. Consequently, these G-depleted viruses cause lethal infection in mice. Thus, wt RABVs can subvert DC-induced antiviral immune response and maintain pathogenicity by decreasing G expression in infected cells and G incorporation into virions.

2002 ◽  
Vol 76 (7) ◽  
pp. 3374-3381 ◽  
Author(s):  
Milosz Faber ◽  
Rojjanaporn Pulmanausahakul ◽  
Suchita S. Hodawadekar ◽  
Sergei Spitsin ◽  
James P. McGettigan ◽  
...  

ABSTRACT A recombinant rabies virus (RV) carrying two identical glycoprotein (G) genes (SPBNGA-GA) was constructed and used to determine the effect of RV G overexpression on cell viability and immunity. Immunoprecipitation analysis and flow cytometry showed that tissue culture cells infected with SPBNGA-GA produced, on average, twice as much RV G as cells infected with RV carrying only a single RV G gene (SPBNGA). The overexpression of RV G in SPBNGA-GA-infected NA cells was paralleled by a significant increase in caspase 3 activity followed by a marked decrease in mitochondrial respiration, neither of which was observed in SPBNGA-infected cells. Furthermore, fluorescence staining and confocal microscopy revealed an increased extent of apoptosis and markedly reduced neurofilament and F actin in SPBNGA-GA-infected primary neuron cultures compared with neuronal cells infected with SPBNGA, supporting the concept that RV G or motifs of the RV G gene trigger the apoptosis cascade. Mice immunized with SPBNGA-GA showed substantially higher antibody titers against the RV G and against the nucleoprotein than SPBNGA-immunized mice, suggesting that the speed or extent of apoptosis directly determines the magnitude of the antibody response.


2021 ◽  
Vol 22 (9) ◽  
pp. 4438
Author(s):  
Jessica Proulx ◽  
Kathleen Borgmann ◽  
In-Woo Park

The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.


2021 ◽  
Author(s):  
Chen Chen ◽  
Chengguang Zhang ◽  
Haoqi Li ◽  
Zongmei Wang ◽  
Yueming Yuan ◽  
...  

Rabies, caused by rabies virus (RABV), is fatal to both humans and animals around the world. Effective clinical therapy for rabies has not been achieved, and vaccination is the most effective means of preventing and controlling rabies. Although different vaccines, such as live attenuated and inactivated vaccines, can induce different immune responses, different expression of pattern recognition receptors (PRRs) also causes diverse immune responses. Toll-like receptor 4 (TLR4) is a pivotal PRR that induces cytokine production and bridges innate and adaptive immunity. Importantly, TLR4 recognizes various virus-derived pathogen-associated molecular patterns (PAMPs) and virus-induced damage-associated molecular patterns (DAMPs), usually leading to the activation of immune cells. However, the role of TLR4 in the humoral immune response induced by RABV has not been revealed yet. Based on TLR4-deficient ( TLR4 -/- ) and wild-type (WT) mouse models, we report that TLR4-dependent recruitment of the conventional type-2 dendritic cells (CD8α - CD11b + cDC2) into secondary lymph organs (SLOs) is critical for antigen presentation. cDC2-initiated differentiation of Tfh cells promotes the proliferation of germinal centre (GC) B cells, the formation of GCs, and the production of plasma cells (PCs), all of which contribute to the production of RABV-specific IgG and virus-neutralizing antibodies (VNAs). Collectively, our work demonstrates that TLR4 is necessary for the recruitment of cDC2 and for the induction of RABV-induced humoral immunity, which is regulated by the cDC2-Tfh-GC B axis. IMPORTANCE Vaccination is the most efficient method to prevent rabies. TLR4, a well-known immune sensor, plays a critical role in initiating innate immune response. Here, we found that TLR4 deficiency ( TLR4 -/- ) mice suppressed the induction of humoral immune response after immunization with rabies virus (RABV), including reduced production of VNAs and RABV-specific IgG, compared with that occurred in wild-type (WT) mice. As a consequence, TLR4 -/- mice exhibited higher mortality than WT mice after challenge with virulent RABV. Importantly, further investigation found that TLR4 signaling promoted the recruitment of cDC2 (CD8α + CD11b - ), a subset of cDCs known to induce CD4 + T cell immunity through their MHC-II presentation machinery. Our results imply that TLR4 is indispensable for an efficient humoral response to rabies vaccine, which provides new insight into the development of novel rabies vaccines.


2021 ◽  
Author(s):  
M. Veronica Lopez ◽  
Sabrina E Vinzon ◽  
Eduardo G. A. Cafferata ◽  
Felipe J Nunez ◽  
Ariadna Soto ◽  
...  

Most approved vaccines against COVID-19 have to be administered in a prime/boost regimen. We engineered a novel vaccine based on a chimeric hAdV5 vector. The vaccine (named CoroVaxG.3) is based on three pillars: i) high expression of Spike to enhance its immunodominance by using a potent promoter and a mRNA stabilizer; ii) enhanced infection of muscle and dendritic cells by replacing the fiber knob domain of hAdV5 by hAdV3; iii) use of Spike stabilized in a prefusion conformation. Transduction with CoroVaxG.3 expressing Spike (D614G) dramatically enhanced Spike expression in human muscle cells, monocytes and dendritic cells compared to CoroVaxG.5 that expressed the native fiber knob domain. A single dose of CoroVaxG.3 induced potent humoral immunity with a balanced Th1/Th2 ratio and potent T-cell immunity, both lasting for at least 5 months. Sera from CoroVaxG.3 vaccinated mice was able to neutralize pseudoviruses expressing B.1 (wild type D614G), B.1.117 (alpha) and P.1 (gamma) Spikes, as well as an authentic WT and P.1 SARS-CoV-2 isolates. Neutralizing antibodies did not wane even after 5 months making this kind of vaccine a likely candidate to enter clinical trials.


2000 ◽  
Vol 74 (17) ◽  
pp. 7895-7902 ◽  
Author(s):  
E. Brian Flanagan ◽  
L. Andrew Ball ◽  
Gail W. Wertz

ABSTRACT Vesicular stomatitis virus (VSV) is the prototype of the Rhabdoviridae and contains nonsegmented negative-sense RNA as its genome. The 11-kb genome encodes five genes in the order 3′-N-P-M-G-L-5′, and transcription is obligatorily sequential from the single 3′ promoter. As a result, genes at promoter-proximal positions are transcribed at higher levels than those at promoter-distal positions. Previous work demonstrated that moving the gene encoding the nucleocapsid protein N to successively more promoter-distal positions resulted in stepwise attenuation of replication and lethality for mice. In the present study we investigated whether moving the gene for the attachment glycoprotein G, which encodes the major neutralizing epitopes, from its fourth position up to first in the gene order would increase G protein expression in cells and alter the immune response in inoculated animals. In addition to moving the G gene alone, we also constructed viruses having both the G and N genes rearranged. This produced three variant viruses having the orders 3′-G-N-P-M-L-5′ (G1N2), 3′-P-M-G-N-L-5′ (G3N4), and 3′-G-P-M-N-L-5′ (G1N4), respectively. These viruses differed from one another and from wild-type virus in their levels of gene expression and replication in cell culture. The viruses also differed in their pathogenesis, immunogenicity, and level of protection of mice against challenge with wild-type VSV. Translocation of the G gene altered the kinetics and level of the antibody response in mice, and simultaneous reduction of N protein expression reduced replication and lethality for animals. These studies demonstrate that gene rearrangement can be exploited to design nonsegmented negative-sense RNA viruses that have characteristics desirable in candidates for live attenuated vaccines.


2019 ◽  
Vol 10 ◽  
Author(s):  
Hyungtaek Jeon ◽  
Jisu Lee ◽  
Suhyuk Lee ◽  
Su-Kyung Kang ◽  
Sang June Park ◽  
...  

Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 59 ◽  
Author(s):  
Wilmschen ◽  
Schneider ◽  
Peters ◽  
Bayer ◽  
Issmail ◽  
...  

The respiratory syncytial virus (RSV) is one major cause of lower respiratory tract infections in childhood and an effective vaccine is still not available. We previously described a new rhabdoviral vector vaccine, VSV-GP, a variant of the vesicular stomatitis virus (VSV), where the VSV glycoprotein G is exchanged by the glycoprotein GP of the lymphocytic choriomeningitis virus. Here, we evaluated VSV-GP as vaccine vector for RSV with the aim to induce RSV neutralizing antibodies. Wild-type F (Fwt) or a codon optimized version (Fsyn) were introduced at position 5 into the VSV-GP genome. Both F versions were efficiently expressed in VSV-GP-F infected cells and incorporated into VSV-GP particles. In mice, high titers of RSV neutralizing antibodies were induced already after prime and subsequently boosted by a second immunization. After challenge with RSV, viral loads in the lungs of immunized mice were reduced by 2–3 logs with no signs of an enhanced disease induced by the vaccination. Even a single intranasal immunization significantly reduced viral load by a factor of more than 100-fold. RSV neutralizing antibodies were long lasting and mice were still protected when challenged 20 weeks after the boost. Therefore, VSV-GP is a promising candidate for an effective RSV vaccine.


2009 ◽  
Vol 84 (3) ◽  
pp. 1513-1526 ◽  
Author(s):  
Bin Yu ◽  
Dora P. A. J. Fonseca ◽  
Sara M. O'Rourke ◽  
Phillip W. Berman

ABSTRACT The identification of vaccine immunogens able to elicit broadly neutralizing antibodies (bNAbs) is a major goal in HIV vaccine research. Although it has been possible to produce recombinant envelope glycoproteins able to adsorb bNAbs from HIV-positive sera, immunization with these proteins has failed to elicit antibody responses effective against clinical isolates of HIV-1. Thus, the epitopes recognized by bNAbs are present on recombinant proteins, but they are not immunogenic. These results led us to consider the possibility that changes in the pattern of antigen processing might alter the immune response to the envelope glycoprotein to better elicit protective immunity. In these studies, we have defined protease cleavage sites on HIV gp120 recognized by three major human proteases (cathepsins L, S, and D) important for antigen processing and presentation. Remarkably, six of the eight sites identified in gp120 were highly conserved and clustered in regions of the molecule associated with receptor binding and/or the binding of neutralizing antibodies. These results suggested that HIV may have evolved to take advantage of major histocompatibility complex (MHC) class II antigen processing enzymes in order to evade or direct the antiviral immune response.


2004 ◽  
Vol 78 (24) ◽  
pp. 13455-13459 ◽  
Author(s):  
Philip M. McKenna ◽  
Pyone Pyone Aye ◽  
Bernhard Dietzschold ◽  
David C. Montefiori ◽  
Louis N. Martin ◽  
...  

ABSTRACT Rabies virus (RV) has recently been developed as a novel vaccine candidate for human immunodeficiency virus type 1 (HIV-1). The RV glycoprotein (G) can be functionally replaced by HIV-1 envelope glycoprotein (Env) if the gp160 cytoplasmic domain (CD) of HIV-1 Env is replaced by that of RV G. Here, we describe a pilot study of the in vivo replication and immunogenicity of an RV with a deletion of G (ΔG) expressing a simian/human immunodeficiency virus SHIV89.6P Env ectodomain and transmembrane domain fused to the RV G CD (ΔG-89.6P-RVG) in a rhesus macaque. An animal vaccinated with ΔG-89.6P-RVG developed SHIV89.6P virus-neutralizing antibodies and SHIV89.6P-specific cellular immune responses after challenge with SHIV89.6P. There was no evidence of CD4+ T-cell loss, and plasma viremia was controlled to undetectable levels by 6 weeks postchallenge and has remained suppressed out to 22 weeks postchallenge.


2008 ◽  
Vol 89 (6) ◽  
pp. 1352-1363 ◽  
Author(s):  
Laurent Gillet ◽  
Susanna Colaco ◽  
Philip G. Stevenson

Herpesviruses are ancient pathogens that infect all vertebrates. The most conserved component of their entry machinery is glycoprotein B (gB), yet how gB functions is unclear. A striking feature of the murid herpesvirus 4 (MuHV-4) gB is its resistance to neutralization. Here, we show by direct visualization of infected cells that the MuHV-4 gB changes its conformation between extracellular virions and those in late endosomes, where capsids are released. Specifically, epitopes on its N-terminal cell-binding domain become inaccessible, whilst non-N-terminal epitopes are revealed, consistent with structural changes reported for the vesicular stomatitis virus glycoprotein G. Inhibitors of endosomal acidification blocked the gB conformation switch. They also blocked capsid release and the establishment of infection, implying that the gB switch is a key step in entry. Neutralizing antibodies could only partially inhibit the switch. Their need to engage a less vulnerable, upstream form of gB, because its fusion form is revealed only in endosomes, helps to explain why gB-directed MuHV-4 neutralization is so difficult.


Sign in / Sign up

Export Citation Format

Share Document