scholarly journals Adeno-Associated Virus (AAV) Capsid Stability and Liposome Remodeling During Endo/Lysosomal pH Trafficking

Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 668 ◽  
Author(s):  
Bridget Lins-Austin ◽  
Saajan Patel ◽  
Mario Mietzsch ◽  
Dewey Brooke ◽  
Antonette Bennett ◽  
...  

Adeno-associated viruses (AAVs) are small, non-pathogenic ssDNA viruses being used as therapeutic gene delivery vectors for the treatment of a variety of monogenic diseases. An obstacle to successful gene delivery is inefficient capsid trafficking through the endo/lysosomal pathway. This study aimed to characterize the AAV capsid stability and dynamics associated with this process for a select number of AAV serotypes, AAV1, AAV2, AAV5, and AAV8, at pHs representative of the early and late endosome, and the lysosome (6.0, 5.5, and 4.0, respectively). All AAV serotypes displayed thermal melt temperatures that varied with pH. The stability of AAV1, AAV2, and AAV8 increased in response to acidic conditions and then decreased at pH 4.0. In contrast, AAV5 demonstrated a consistent decrease in thermostability in response to acidification. Negative-stain EM visualization of liposomes in the presence of capsids at pH 5.5 or when heat shocked showed induced remodeling consistent with the externalization of the PLA2 domain of VP1u. These observations provide clues to the AAV capsid dynamics that facilitate successful infection. Finally, transduction assays revealed a pH and temperature dependence with low acidity and temperatures > 4 °C as detrimental factors.

2020 ◽  
Vol 20 ◽  
Author(s):  
L. Hajba ◽  
A. Guttman

: Adeno-associated virus (AAV) is one of the most promising viral gene delivery vectors with long-term gene expression and disease correction featuring high efficiency and excellent safety in human clinical trials. During the production of AAV vectors,there are several quality control (QC)parameters that should be rigorously monitored to comply with clini-cal safety and efficacy. This review gives a short summary of the most frequently used AVV production and purification methods,focusing on the analytical techniques applied to determine the full/empty capsid ratio and the integrity of the encapsidated therapeutic DNA of the products.


2006 ◽  
Vol 24 (2) ◽  
pp. 198-204 ◽  
Author(s):  
Narendra Maheshri ◽  
James T Koerber ◽  
Brian K Kaspar ◽  
David V Schaffer

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 935
Author(s):  
Manas R. Biswal ◽  
Sofia Bhatia

Ocular gene therapy offers significant potential for preventing retinal dystrophy in patients with inherited retinal dystrophies (IRD). Adeno-associated virus (AAV) based gene transfer is the most common and successful gene delivery approach to the eye. These days, many studies are using non-viral nanoparticles (NPs) as an alternative therapeutic option because of their unique properties and biocompatibility. Here, we discuss the potential of carbon dots (CDs), a new type of nanocarrier for gene delivery to the retinal cells. The unique physicochemical properties of CDs (such as optical, electronic, and catalytic) make them suitable for biosensing, imaging, drug, and gene delivery applications. Efficient gene delivery to the retinal cells using CDs depends on various factors, such as photoluminescence, quantum yield, biocompatibility, size, and shape. In this review, we focused on different approaches used to synthesize CDs, classify CDs, various pathways for the intake of gene-loaded carbon nanoparticles inside the cell, and multiple studies that worked on transferring nucleic acid in the eye using CDs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 62
Author(s):  
Mangesh Morey ◽  
Akshay Srivastava ◽  
Abhay Pandit

We report a physiologically stable and cytocompatible glucose-responsive nonviral gene delivery system made up of boronate functionalized polymeric material. Herein, we utilize boronate cis-diol interactions to develop a glucose-responsive submicron particle (SMP) system. The stability of the boronate interaction at a physiological pH was achieved by copolymerization of dimethyl aminoethyl methacrylate (DMAEMA) with acrylamidophenylboronic acid (AAPBA) and the formation of a complex with polyvinylalcohol (PVA) which is governed by cis-diol interactions. The shift in hydrodynamic diameter of SMPs was observed and correlated with increasing glucose concentrations at a physiological pH. Optimal transfection was observed for a 5 µg dose of the gaussia luciferase reporter gene in NIH3T3 cells without any adverse effect on cellular viability. The destabilization of the AAPBA–PVA complex by interacting with glucose allowed the release of encapsulated bovine serum albumin (BSA) in a glucose-responsive manner. In total, 95% of BSA was released from SMPs at a 50 mM glucose concentration after 72 h. A two-fold increase in transfection was observed in 50 mM glucose compared to that of 10 mM glucose.


Sign in / Sign up

Export Citation Format

Share Document