scholarly journals First Description of a Temperate Bacteriophage (vB_FhiM_KIRK) of Francisella hispaniensis Strain 3523

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 327
Author(s):  
Kristin Köppen ◽  
Grisna I. Prensa ◽  
Kerstin Rydzewski ◽  
Hana Tlapák ◽  
Gudrun Holland ◽  
...  

Here we present the characterization of a Francisella bacteriophage (vB_FhiM_KIRK) including the morphology, the genome sequence and the induction of the prophage. The prophage sequence (FhaGI-1) has previously been identified in F. hispaniensis strain 3523. UV radiation induced the prophage to assemble phage particles consisting of an icosahedral head (~52 nm in diameter), a tail of up to 97 nm in length and a mean width of 9 nm. The double stranded genome of vB_FhiM_KIRK contains 51 open reading frames and is 34,259 bp in length. The genotypic and phylogenetic analysis indicated that this phage seems to belong to the Myoviridae family of bacteriophages. Under the conditions tested here, host cell (Francisella hispaniensis 3523) lysis activity of KIRK was very low, and the phage particles seem to be defective for infecting new bacterial cells. Nevertheless, recombinant KIRK DNA was able to integrate site-specifically into the genome of different Francisella species after DNA transformation.

2018 ◽  
Vol 81 (7) ◽  
pp. 1117-1125 ◽  
Author(s):  
MENGZHE LI ◽  
YANQIU JIN ◽  
HONG LIN ◽  
JINGXUE WANG ◽  
XIUPING JIANG

ABSTRACT Vibrio parahaemolyticus is an important foodborne pathogen that is generally transmitted via raw or undercooked seafood. Endolysins originating from bacteriophages offer a new way to control bacterial pathogens. The objectives of this study were to sequence a novel lytic V. parahaemolyticus phage VPp1 and determine the antibacterial activities of the recombinant endolysin (LysVPp1) derived from this phage. The complete VPp1 genome contained a double-stranded DNA of 50,431 bp with a total G+C content of 41.35%. The genome was predicted to encode 67 open reading frames (ORFs), which were organized as nucleotide metabolism, replication, structure, packaging, lysis, and some additional functions. Two tRNAs were encoded to carry anticodons UGG and CCA. Among the functional proteins, ORF33 was deduced to encode endolysin, whereas no holin/antiholin or Rz/Rz1 lysis gene equivalents were found in the VPp1 genome. ORF33 was cloned and expressed. The endolysin LysVPp1 could lyse 9 of 12 V. parahaemolyticus strains, showing its relatively broader host spectrum than phage VPp1, which lysed only 3 of 12 V. parahaemolyticus strains. Furthermore, for EDTA-pretreated bacterial cells, the optical density of the LysVPp1 treatment group decreased by 0.4 at 450 nm, compared with less than 0.1 in control groups, demonstrating enhanced hydrolytic properties. These results contribute to the potential for development of novel enzybiotics for controlling V. parahaemolyticus.


2003 ◽  
Vol 71 (9) ◽  
pp. 5427-5431 ◽  
Author(s):  
Yu-Ching Yeh ◽  
Tzu-Lung Lin ◽  
Kai-Chih Chang ◽  
Jin-Town Wang

ABSTRACT To find genes involved in natural competence in Helicobacter pylori, we used a bioinformatics database search and found two transformation-related open reading frames (ORFs): a comE3 homologue (HP1361 ORF) of Bacillus subtilis and a comL homologue (HP1378 ORF) of Neisseria gonorrhoeae. We failed to obtain an HP1378 ORF knockout mutant, while an HP1361 ORF knockout mutant was obtained by transposon shuttle mutagenesis. The DNA transformation abilities of both natural transformation and electroporation were severely impaired (frequency, <10−9) in the HP1361− mutant. Complementation with a pHel2 vector carrying the HP1361 ORF restored the capabilities of natural competence (to a frequency of 4.21 × 10−7) and electroporation (to 3.62 × 10−7). The HP1361− mutant showed impairment in DNA binding and uptake. The results suggest that HP1361 is a comE3 homologue and is required for DNA binding and uptake during DNA transformation.


2021 ◽  
Vol 9 (10) ◽  
pp. 2040
Author(s):  
Jun Kwon ◽  
Sang Wha Kim ◽  
Sang Guen Kim ◽  
Jeong Woo Kang ◽  
Won Joon Jung ◽  
...  

The bacterial genus Pseudomonas is a common causative agent of infections in veterinary medicine. In this study, we focused on Pseudomonas aeruginosa canine otitis externa isolates. Due to prolonged antibiotic treatment of otitis externa, antibiotic resistance is common and has become a major complication. Many alternatives to antibiotics have been studied, with bacteriophages emerging as the most promising alternatives. Here, we isolated and characterized a novel phage, pPa_SNUABM_DT01, by investigating its morphology, growth, lysis kinetics, and genomic characteristics. Phages have a vigorous capacity to eliminate bacterial cells through bacterial lysis. This capacity is dependent on the multiplicity of infection (MOI), but even at low MOIs, the phage successfully inhibited bacterial regrowth. The phage genome was 265,520 bp in size and comprised 312 putative open reading frames (ORFs). Comparative genome analysis demonstrated that the phage is a novel species in Myoviridae. The nucleotide similarity was moderately high compared with the Pseudomonas virus, Noxifer. However, a phylogenetic analysis and a dot plot indicated that pPa_SNUABM_DT01 is not closely related to the Phikzvirus or Noxifervirus genus but, instead, belongs to a novel one. The genome comparisons also indicate that the phage, pPa_SNUABM_DT01, could be a novel genus.


Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Jun Kwon ◽  
Sang Guen Kim ◽  
Hyoun Joong Kim ◽  
Sib Sankar Giri ◽  
Sang Wha Kim ◽  
...  

The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella strain isolated from reptiles as a host, we isolated and characterized the novel jumbo-bacteriophage pSal-SNUABM-04. This phage was investigated in terms of its morphology, host infectivity, growth and lysis kinetics, and genome. The phage was classified as Myoviridae based on its morphological traits and showed a comparatively wide host range. The lysis efficacy test showed that the phage can inhibit bacterial growth in the planktonic state. Genetic analysis revealed that the phage possesses a 239,626-base pair genome with 280 putative open reading frames, 76 of which have a predicted function and 195 of which have none. By genome comparison with other jumbo phages, the phage was designated as a novel member of Machinavirus composed of Erwnina phages.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Chaitanya Erady ◽  
Adam Boxall ◽  
Shraddha Puntambekar ◽  
N. Suhas Jagannathan ◽  
Ruchi Chauhan ◽  
...  

AbstractUncharacterized and unannotated open-reading frames, which we refer to as novel open reading frames (nORFs), may sometimes encode peptides that remain unexplored for novel therapeutic opportunities. To our knowledge, no systematic identification and characterization of transcripts encoding nORFs or their translation products in cancer, or in any other physiological process has been performed. We use our curated nORFs database (nORFs.org), together with RNA-Seq data from The Cancer Genome Atlas (TCGA) and Genotype-Expression (GTEx) consortiums, to identify transcripts containing nORFs that are expressed frequently in cancer or matched normal tissue across 22 cancer types. We show nORFs are subject to extensive dysregulation at the transcript level in cancer tissue and that a small subset of nORFs are associated with overall patient survival, suggesting that nORFs may have prognostic value. We also show that nORF products can form protein-like structures with post-translational modifications. Finally, we perform in silico screening for inhibitors against nORF-encoded proteins that are disrupted in stomach and esophageal cancer, showing that they can potentially be targeted by inhibitors. We hope this work will guide and motivate future studies that perform in-depth characterization of nORF functions in cancer and other diseases.


2013 ◽  
Vol 195 (17) ◽  
pp. 3819-3826 ◽  
Author(s):  
S. Gong ◽  
Z. Yang ◽  
L. Lei ◽  
L. Shen ◽  
G. Zhong

2021 ◽  
Author(s):  
Yang Sun ◽  
Yan qiong Li ◽  
Wen han Dong ◽  
Ai li Sun ◽  
Ning wei Chen ◽  
...  

Abstract The complete genome of the dsRNA virus isolated from Rhizoctonia solani AG-1 IA 9–11 (designated as Rhizoctonia solani dsRNA virus 11, RsRV11 ) were determined. The RsRV11 genome was 9,555 bp in length, contained three conserved domains, SMC, PRK and RT-like super family, and encoded two non-overlapping open reading frames (ORFs). ORF1 potentially coded for a 204.12 kDa predicted protein, which shared low but significant amino acid sequence identities with the putative protein encoded by Rhizoctonia solani RNA virus HN008 (RsRV-HN008) ORF1. ORF2 potentially coded for a 132.41 kDa protein which contained the conserved motifs of the RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis indicated that RsRV11 was clustered with RsRV-HN008 in a separate clade independent of other virus families. It implies that RsRV11, along with RsRV-HN008 possibly a new fungal virus taxa closed to the family Megabirnaviridae, and RsRV11 is a new member of mycoviruses.


2012 ◽  
Vol 78 (24) ◽  
pp. 8719-8734 ◽  
Author(s):  
Mariángeles Briggiler Marcó ◽  
Josiane E. Garneau ◽  
Denise Tremblay ◽  
Andrea Quiberoni ◽  
Sylvain Moineau

ABSTRACTWe characterized twoLactobacillus plantarumvirulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eightL. plantarumstrains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least twoL. plantarumstrains, LMG9211 and WCSF1. The linear double-stranded DNA genome of thepac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that ofPediococcus damnosusphage clP1 and 77% identity with that ofL. plantarumphage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of thecos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those ofBacillusandLactobacillusstrains as well as phages. Some phage B2 genes were similar to ORFs fromL. plantarumphage LP65 of theMyoviridaefamily. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.


2007 ◽  
Vol 74 (4) ◽  
pp. 1281-1283 ◽  
Author(s):  
Donald A. Comfort ◽  
Chung-Jung Chou ◽  
Shannon B. Conners ◽  
Amy L. VanFossen ◽  
Robert M. Kelly

ABSTRACT Bioinformatics analysis and transcriptional response information for Pyrococcus furiosus grown on α-glucans led to the identification of a novel isomaltase (PF0132) representing a new glycoside hydrolase (GH) family, a novel GH57 β-amylase (PF0870), and an extracellular starch-binding protein (1,141 amino acids; PF1109-PF1110), in addition to several other putative α-glucan-processing enzymes.


Sign in / Sign up

Export Citation Format

Share Document