scholarly journals Selective Interaction of Sugarcane eIF4E with VPgs from Sugarcane Mosaic Pathogens

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 518
Author(s):  
Zongtao Yang ◽  
Meng Dong ◽  
Guangyuan Cheng ◽  
Shuxian Liu ◽  
Hai Zhang ◽  
...  

Eukaryotic translation initiation factor 4E (eIF4E) plays a key role in the infection of potyviruses in susceptible plants by interacting with viral genome-linked protein (VPg). Sugarcane (Saccharum spp.) production is threatened by mosaic disease caused by Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Sugarcane streak mosaic virus (SCSMV). In this study, two eIF4Es and their isoform eIF(iso)4E and 4E-binding protein coding genes were cloned from sugarcane cultivar ROC22 and designated SceIF4Ea, SceIF4Eb, SceIF(iso)4E, and ScnCBP, respectively. Real-time quantitative PCR analysis showed different expression profiles of these four genes upon SCMV challenge. A subcellular localization assay showed that SceIF4Ea, SceIF4Eb, SceIF(iso)4E, and ScnCBP were distributed in the nucleus and cytoplasm. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that SceIF4Ea/b and SceIF(iso)4E were selectively employed by different sugarcane mosaic pathogens, i.e., SCMV-VPg interacted with SceIF4Ea/b and SceIF(iso)4E, SrMV-VPg interacted with both SceIF4Eb and SceIF(iso)4E, and SCSMV-VPg interacted only with SceIF(iso)4E. Intriguingly, the BiFC assays, but not the Y2H assays, showed that ScnCBP interacted with the VPgs of SCMV, SrMV, and SCSMV. Competitive interaction assays showed that SCMV-VPg, SrMV-VPg, and SCMV-VPg did not compete with each other to interact with SceIF(iso)4E, and SceIF(iso)4E competed with SceIF4Eb to interact with SrMV-VPg but not SCMV-VPg. This study sheds light on the molecular mechanism of sugarcane mosaic pathogen infection of sugarcane plants and benefits sugarcane breeding against the sugarcane mosaic disease.

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1441
Author(s):  
Yuping Li ◽  
Xiaoju Liang ◽  
Xuguo Zhou ◽  
Zhigeng Wu ◽  
Ling Yuan ◽  
...  

Best known as licorice, Glycyrrhiza Linn., a genus of herbaceous perennial legume, has been used as a traditional herbal medicine in Asia and a flavoring agent for tobacco and food industry in Europe and America. Abiotic stresses and hormonal treatments can significantly impact the development and metabolism of secondary metabolites in Glycyrrhiza. To better understand the biosynthesis of the trace-amount bioactive compounds, we first screened for the suitable reference genes for quantitative real-time reverse transcription PCR (qRT-PCR) analysis in Glycyrrhiza. The expression profiles of 14 candidate reference genes, including Actin1 (ACT), Clathrin complex AP1 (CAC), Cyclophilin (CYP), Heat-shock protein 40 (DNAJ), Dehydration responsive element binding gene (DREB), Translation elongation factor1 (EF1), Ras related protein (RAN), Translation initiation factor (TIF1), β-Tubulin (TUB), Ubiquitin-conjugating enzyme E2 (UBC2), ATP binding-box transpoter 2 (ABCC2), COP9 signal compex subunit 3 (COPS3), Citrate synthase (CS), and R3H domain protein 2 (R3HDM2) from two congeneric species, Glycyrrhiza uralensis F. and Glycyrrhiza inflata B., were examined under abiotic stresses (osmotic and salinity) and hormonal treatments (Abscisic acid (ABA) and methyl jasmonic acid (MeJA)) using a panel of software, including geNorm, NormFinder, BestKeeper, and Delta CT. The overall stability, however, was provided by RefFinder, a comprehensive ranking system integrating inputs from all four algorithms. In G. uralensis, the most stable reference genes under osmotic stress, salt stress, ABA treatment, and MeJA treatment were TIF1, DNAJ, CS, and ABCC2 for leaves and DNAJ, DREB, CAC, and CAC for roots, respectively. In comparison, the top ranked genes were TUB, CAC, UBC2, and RAN for leaves and TIF1, ABCC2, CAC, and UBC2 for roots, respectively, under stress and hormonal treatments in G. inflata. ACT and TIF1, on the other hand, were the least stable genes under the most experimental conditions in the two congeneric species. Finally, our survey of the reference genes in legume shows that EF, ACT, UBC2, and TUB were the top choices for the abiotic stresses while EF, UBC2, CAC, and ABCC2 were recommended for the hormonal treatments in Leguminosae. Our combined results provide reliable normalizers for accurate gene quantifications in Glycyrrhiza species, which will allow us to exploit its medicinal potential in general and antiviral activities in particular.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is a popular cultivated fruit crop with high economic value in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 415
Author(s):  
Wensen Shi ◽  
Rundong Yao ◽  
Runze Sunwu ◽  
Kui Huang ◽  
Zhibin Liu ◽  
...  

Apple mosaic disease has a great influence on apple production. In this study, an investigation into the incidence of apple mosaic disease in southwest China was performed, and the pathogen associated with the disease was detected. The results show that 2869 apple trees with mosaic disease were found in the Sichuan, Yunnan, and Guizhou Provinces, with an average incidence of 9.6%. Although apple mosaic virus (ApMV) is widespread in apples worldwide, the diseased samples were negative when tested for ApMV. However, a novel ilarvirus (apple necrotic mosaic virus, ApNMV) was identified in mosaic apple leaves which tested negative for ApMV. RT-PCR analysis indicated that ApNMV was detected in 322 out of 357 samples with mosaic symptoms. Phylogenetic analysis of coat protein (CP) sequences of ApNMV isolates suggested that, compared with ApMV, ApNMV was closer to prunus necrotic ringspot virus (PNRSV). The CP sequences of the isolates showed the diversity of ApNMV, which may enable the virus to adapt to the changeable environments. In addition, the pathology of mosaic disease was observed by microscope, and the result showed that the arrangement of the tissue and the shape of the cell, including the organelle, were seriously destroyed or drastically changed.


2018 ◽  
Vol 53 (1) ◽  
pp. 125-129
Author(s):  
Mônika Fecury Moura ◽  
Norberto da Silva ◽  
Maria Isabel Motta Hoffmann ◽  
Marcelo Agenor Pavan ◽  
Renate Krause-Sakate

Abstract: The objective of this work was to evaluate lettuce genotypes for their reaction to Lettuce mosaic virus (LMV; Most-type, isolate AF-199) and variations of the eukaryotic translation initiation factor eIF4E. All inoculated genotypes were susceptible to LMV, which was detected by RT-PCR using specific primer pairs. However, the accessions 169501, 169501C, 172918A, and 162499 showed late development of symptoms that appeared only on the inoculated leaves. Sequencing of the coding region of eIF4E showed that these genotypes have an eIF4E0 (mol 0 ) standard typical for their susceptibility to LMV, indicating that the phenotype found is not correlated to nucleotide variations in this translation factor.


2018 ◽  
Vol 108 (8) ◽  
pp. 1011-1018 ◽  
Author(s):  
Xue Feng ◽  
Gardenia E. Orellana ◽  
James R. Myers ◽  
Alexander V. Karasev

Recessive resistance to Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris) is governed by four genes that include one strain-nonspecific helper gene bc-u, and three strain-specific genes bc-1, bc-2, and bc-3. The bc-3 gene was identified as an eIF4E translation initiation factor gene mediating resistance through disruption of the interaction between this protein and the VPg protein of the virus. The mode of action of bc-1 and bc-2 in expression of BCMV resistance is unknown, although bc-1 gene was found to affect systemic spread of a related potyvirus, Bean common mosaic necrosis virus. To investigate the possible role of both bc-1 and bc-2 genes in replication, cell-to-cell, and long-distance movement of BCMV in P. vulgaris, we tested virus spread of eight BCMV isolates representing pathogroups I, IV, VI, VII, and VIII in a set of bean differentials expressing different combinations of six resistance alleles including bc-u, bc-1, bc-12, bc-2, bc-22, and bc-3. All studied BCMV isolates were able to replicate and spread in inoculated leaves of bean cultivars harboring bc-u, bc-1, bc-12, bc-2, and bc-22 alleles and their combinations, while no BCMV replication was found in inoculated leaves of cultivar IVT7214 carrying the bc-u, bc-2, and bc-3 genes, except for isolate 1755a, which was capable of overcoming the resistance conferred by bc-2 and bc-3. In contrast, the systemic spread of all BCMV isolates from pathogroups I, IV, VI, VII, and VIII was impaired in common bean cultivars carrying bc-1, bc-12, bc-2, and bc-22 alleles. The data suggest that bc-1 and bc-2 recessive resistance genes have no effect on the replication and cell-to-cell movement of BCMV, but affect systemic spread of BCMV in common bean. The BCMV resistance conferred by bc-1 and bc-2 and affecting systemic spread was found only partially effective when these two genes were expressed singly. The efficiency of the restriction of the systemic spread of the virus was greatly enhanced when the alleles of bc-1 and bc-2 genes were combined together.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jinlong Guo ◽  
Shiwu Gao ◽  
Qinliang Lin ◽  
Hengbo Wang ◽  
Youxiong Que ◽  
...  

As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused byPotyvirus sugarcane mosaic virus(SCMV) and/orSorghum mosaic virus(SrMV), with additional differences in viral strains. RNA interference (RNAi) is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP) genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence andcp4-epspsherbicide-tolerant gene was transferred to sugarcane cultivar ROC22 viaAgrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.


2003 ◽  
Vol 132 (3) ◽  
pp. 1272-1282 ◽  
Author(s):  
Valérie Nicaise ◽  
Sylvie German-Retana ◽  
Raquel Sanjuán ◽  
Marie-Pierre Dubrana ◽  
Marianne Mazier ◽  
...  

2003 ◽  
Vol 16 (7) ◽  
pp. 608-616 ◽  
Author(s):  
Frédéric Revers ◽  
Thomas Guiraud ◽  
Marie-Christine Houvenaghel ◽  
Thierry Mauduit ◽  
Olivier Le Gall ◽  
...  

With the aim to characterize plant and viral factors involved in the molecular interactions between plants and potyviruses, a Lettuce mosaic virus (LMV)-Arabidopsis thaliana pathosystem was developed. Screening of Arabi-dopsis accessions with LMV isolates indicated the existence of a large variability in the outcome of the interaction, allowing the classification of Arabidopsis accessions into seven susceptibility groups. Using a reverse genetic approach, the genome-linked protein of LMV, a multifunc-tional protein shown to be involved in viral genome amplification and movement of potyviruses, was established as the viral determinant responsible for the ability to overcome the resistance of the Niederzenz accession to LMV-0. Preliminary genetic analyses from F2 and recombinant inbred lines available between susceptible and resistant Arabidopsis accessions revealed the existence of at least three resistance phenotypes to LMV with different genetic bases. One dominant resistance gene, designated LLM1, involved in blocking the replication or cell-to-cell movement of the LMV-0 isolate in the Columbia accession, was mapped to chromosome I and shown to be linked to the marker nga280. At the same time, genetic analyses of segregating F2 populations were consistent with the restriction of the systemic movement of the LMV-AF199 isolate in Columbia being controlled by two dominant genes and with the complete resistance to all tested LMV isolates of the Cape Verde islands (Cvi) accession being conferred by a single recessive resistance gene. Sequencing of the eu-karyotic translation initiation factor 4E genes from the different LMV-resistant Arabidopsis accessions showed that these factors are not directly involved in the characterized resistance phenotypes.


2019 ◽  
Vol 109 (5) ◽  
pp. 895-903 ◽  
Author(s):  
Manuel Miras ◽  
Miguel Juárez ◽  
Miguel A. Aranda

Moroccan watermelon mosaic virus (MWMV) represents an emerging threat to cucurbit production in the Mediterranean Basin. We sequenced the near complete genome of MWMV-SQ10_1.1, a cloned Spanish isolate. MWMV-SQ10_1.1 has the typical potyvirus genomic structure, and phylogenetic analysis showed that it shared a common ancestor with other Mediterranean MWMV isolates. We used MWMV SQ10_1.1 to inoculate plants in a collection of commercial squash cultivars, including some described as potyvirus resistant. All inoculated plants from all cultivars showed severe infection symptoms. Twenty-four Cucurbita spp. accessions were then tested for their susceptibility to MWMV-SQ10_1.1. Plants of the C. ecuadorensis PI 432441 accession showed no symptoms and their enzyme-linked immunosorbent assay readings were similar to uninfected controls. Progeny analysis of F1 and F2 populations suggested that two recessive genes control PI 432441 resistance to MWMV. We hypothesized that this resistance could be associated with alleles of genes encoding the eukaryotic translation initiation factor 4E (eIF4E), particularly after determination of its recessive nature. A multiple sequence alignment including the two eIF4E ortholog sequences from PI 432441 (CeeIF4E1 and CeeIF4E2) identified three amino acid substitutions in CeeIF4E1 and two amino acid substitutions in CeeIF4E2 potentially involved in potyvirus resistance. Polymerase chain reaction markers for CeeIF4E1 and CeeIF4E2 were developed and used to genotype 156 F2 individuals already phenotyped; this analysis did not support an association of either CeeIF4E2 or CeeIF4E1 with MWMV resistance.


Sign in / Sign up

Export Citation Format

Share Document