scholarly journals Porcine Deltacoronavirus Utilizes Sialic Acid as an Attachment Receptor and Trypsin Can Influence the Binding Activity

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2442
Author(s):  
Yixin Yuan ◽  
Shaopo Zu ◽  
Yunfei Zhang ◽  
Fujie Zhao ◽  
Xiaohui Jin ◽  
...  

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in nursing piglets. Studies showed that PDCoV uses porcine aminopeptidase N (pAPN) as an entry receptor, but the infection of pAPN-knockout cells or pigs with PDCoV revealed that pAPN might be not a critical functional receptor, implying there exists an unidentified receptor involved in PDCoV infection. Herein, we report that sialic acid (SA) can act as an attachment receptor for PDCoV invasion and facilitate its infection. We first demonstrated that the carbohydrates destroyed on the cell membrane using NaIO4 can alleviate the susceptibility of cells to PDCoV. Further study showed that the removal of SA, a typical cell-surface carbohydrate, could influence the PDCoV infectivity to the cells significantly, suggesting that SA was involved in the infection. The results of plaque assay and Western blotting revealed that SA promoted PDCoV infection by increasing the number of viruses binding to SA on the cell surface during the adsorption phase, which was also confirmed by atomic force microscopy at the microscopic level. In in vivo experiments, we found that the distribution levels of PDCoV and SA were closely relevant in the swine intestine, which contains huge amount of trypsin. We further confirmed that SA-binding capacity to PDCoV is related to the pre-treatment of PDCoV with trypsin. In conclusion, SA is a novel attachment receptor for PDCoV infection to enhance its attachment to cells, which is dependent on the pre-treatment of trypsin on PDCoV. This study paves the way for dissecting the mechanisms of PDCoV–host interactions and provides new strategies to control PDCoV infection.

1983 ◽  
Vol 157 (1) ◽  
pp. 371-376 ◽  
Author(s):  
M Fogel ◽  
P Altevogt ◽  
V Schirrmacher

A plastic adherent variant line (ESb-M) of a highly invasive and metastatic murine T cell lymphoma (ESb) was found to have lost its metastatic potential while still being tumorigenic in normal syngeneic hosts. The variant retained most of its ESb-derived antigenic and biochemical characteristics but differed at binding sites for certain lectins with specificity for terminal N-acetylgalactosamine residues. Whereas such sites were masked by sialic acid on metastatic ESb cells, they became unmasked on the adherent variant line. Metastatic revertants of ESb-M cells did not express the respective lectin receptor sites because these were again masked by sialic acid. It is suggested that the masking of specific lectin receptors sites on the tumor cell surface is of crucial importance for metastatis. If freely exposed, these sites may change adherence characteristics of the cells possibly not only in vitro (to plastic) but also in vivo.


Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1245-1252 ◽  
Author(s):  
Yvonne C. Barnes ◽  
Tim P. Skelton ◽  
Ivan Stamenkovic ◽  
Dennis C. Sgroi

The macrophage-specific cell surface receptor sialoadhesin, which is a member of the newly recognized family of sialic acid binding lectins called siglecs, binds glycoprotein and glycolipid ligands containing a2-3–linked sialic acid on the surface of several leukocyte subsets. Recently, the sialic acid binding activity of the siglec CD22 has been demonstrated to be regulated by sialylation of the CD22 receptor molecule. In the present work, we show that desialylation of in vivo macrophage sialylconjugates enhances sialoadhesin-mediated lectin activity. Herein, we show that receptor sialylation of soluble sialoadhesin inhibits its binding to Jurkat cell ligands, and that charge-dependent repulsion alone cannot explain this inhibition. Furthermore, we show that the inhibitory effect of sialic acid is partially dependent on the presence of an intact exocyclic side chain. These results, in conjunction with previous findings, suggest that sialylation of siglecs by specific glycosyltransferases may be a common mechanism by which siglec-mediated adhesion is regulated.


2020 ◽  
Author(s):  
Yumiko Kono ◽  
Keita Utsunomiya ◽  
Yuta Ohira ◽  
Hirokazu Satoh ◽  
Naoki Kan ◽  
...  

Abstract Background Monoclonal antibodies (mAb) developed to target specific cancers have achieved considerable success to-date. To further enhance therapeutic efficacy monoclonal antibodies may be conjugated with a cytotoxic drug or radioisotope. We present the development of new method based on site-specific conjugation (SSC) for targeting HER2. The study design involves a comparison of the accumulation of Ga-67 labeled anti-HER2 antibodies with SSC versus conventional chemical conjugation in HER2-positive tumors. Anti-HER2 antibodies were chemically conjugated (Chem) with the bifunctional chelator deferoxamine (Chem-mAb). The resulting chemical conjugate was radiolabeled with Ga-67 yielding Ga-67-Chem -mAb. The SSC anti-HER2 antibodies enzymatically conjugated with deferoxamine using transglutaminase (SSC-mAb) and radiolabeled with Ga-67 yielding Ga-67-SSC-mAb. In vitro, the binding activity of HER2 to both conjugated antibodies was measured using surface Plasmon resonance. In vivo, a xenograft mouse model consisting of transplanted CHO/HER2 were divided into two groups, the Chem and the SSC group. Planar images were acquired over three days after each mAb injection, respectively. Pharmacokinetic analysis was used to compare the Chem group to the SSC group, for Ga-67 accumulation. Result The SSC and Chem groups were found to have similar HER2 binding capacity, however the tumor accumulation ratio gradually increased in the SSC group. The pharmacokinetic studies also found that radiolabeled mAb accumulation was significantly higher in the SSC group than the Chem group in not only the tumors, but also in blood and in other organs. Conclusion The new site-specific conjugation may improve targeted antigen-specific cancer radioimmunotherapy and may, due to higher retention, require a lower dose.


2021 ◽  
Vol 07 ◽  
Author(s):  
Betina Cardoso

Introduction: The importance of an immediate tool to help patients and prevent viral diffusion of new pneumonia caused by 2019 novel coronavirus (2019-nCoV or SARS-CoV-2) that causes the disease COVID-19 becomes evident. Recent articles have reported on body site-specific SARS-CoV-2 infection, showing very active replication in the throat and upper respiratory tract when symptoms were still mild, and thus being efficient in viral transmission in sputum. Material and Methods: An alternative that may be feasible is to resort to scientific studies that demonstrate the antiviral potential of medicinal plants species through in-vitro and in-vivo experiments to alleviate symptoms and prevent the spread of contagion. A literature search in Scopus and PubMed on herbs and foods with antiviral properties was performed. Results: Herbs and foods with demonstrated antiviral potential have been identified, which could limit SARS-CoV-2 spreading by interfering on ACE2 protein on infection sites. The analysis of transdisciplinary knowledge allows us to connect previous research on the action of common plants and foods on viruses to limit the replication of SARS-CoV-2 in the throat and upper respiratory tract. Conclusions: Herbs and foods with demonstrated antiviral potential have been identified, which could limit SARS-CoV-2 spreading by interfering on ACE2 protein on infection sites. The analysis of transdisciplinary knowledge allows us to connect previous research on the action of common plants and foods on viruses to limit the replication of SARS-CoV-2 in the throat and upper respiratory tract.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 3-3
Author(s):  
Hang Chen ◽  
Luyi Peng ◽  
Jia Yu ◽  
Xuan Yuan ◽  
Shruti Chaturvedi ◽  
...  

Introduction: Atypical Hemolytic Uremic Syndrome (aHUS) is a disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. aHUS is usually caused by a predisposing germline variant in a complement regulatory gene, and a second hit of a complement amplifying condition such as infection, pregnancy, or inflammation.However, only approximately 50% of aHUS patients have identifiable genetic variants, with variants in factor H (CFH) accounting for 20%-30% of the genetic predisposition, C3 for 7%, membrane cofactor protein (MCP)/CD46 for 8%, factor B (CFB) for 2% and factor I (CFI) for 6%. For the other 50% of the patients, the genetic predisposition remains elusive. CFH binds to α2,3 sialic acid (SA) linked glycans on host cell surfaces and protects against attack by the alternative pathway of complement (APC). We hypothesized that the biosynthesis of SA is essential to complement regulation and SA biosynthesis defects predispose to aHUS. Methods: We performed targeted sequencing on 34 aHUS patients and 43 healthy controls for 4 genes that are responsible for the de novo biosynthesis of sialic acid: GNE, NANS, NANP, and CMAS. Then we used CRISPR-Cas9 and lentivirus systems to manipulate these genes in TF1 or TF1 PIGA-null cells, which lack the glycophosphatidylinositol-linked cell surface complement regulators CD55 and CD59, and allow the APC cascade to proceed once activated. α2,3 SA levels on the cell surface were measured with Maackia Amurensis lectin II (MAL II). Finally, we studied the functional consequences of these genetic changes. Normal human serum (NHS) was used to activate the APC on cells, and factor D (CFD) depleted serum (D-Dpl) was used to specifically block APC activation. C5b-9 deposition and CFH binding capacity on cells were detected by flow cytometry, and complement induced cell killing was detected via a WST-1 cell viability assay (mHam). Results: i) Rare germline variants found in SA biosynthesis genes Two rare germline variants (minor allele frequency < 0.005; data from GnomAD) were identified via targeted sequencing. An NANS M117I variant was found in an aHUS patient, while an NANP A153V variant was found in a control. The aHUS case did not harbor any variants in known complement genes. ii) Loss ofNANS but not NANP decreasesα2,3 SA on TF1 cells NANS knockout TF1 cells showed decreased α2,3 SA, demonstrating that this gene is essential for de novo SA biosynthesis. Conversely, NANP knockout TF1 cells showed no α2,3 SA level change. iii) NANS knockout increases the susceptibility to the APC TF1 PIGA-null cells with NANS knockout (TF1 DKO) had significantly higher C5b-9 deposition when treated with NHS compared to deletion of either gene alone (Figure A), demonstrating the formation of membrane attack complex (MAC). Cell viability assays also showed that TF1 DKO cells had significantly higher complement-induced cell killing when treated with NHS. Both C5b9 deposition and killing were rescued by APC-specific inhibition targeting CFD, demonstrating SA biosynthesis defects will increase the susceptibility to the APC specifically. iv) NANS knockout decreases the binding capacity of CFH To investigate CFH binding to the cell surface, C3b was first evenly loaded onto cells, followed by the addition of recombinant CFH. NANS knockout cells displayed significantly reduced CFH binding capacity, providing a mechanism for APC activation in the NANS knockout. v) NANS M117I decreases de novo biosynthesis of SA To assess the NANS variant identified in a patient with aHUS, TF1 DKO cells were transduced with a lentivirus containing the either wild type or M117I-mutated NANS, and cell-sorted to select individual clones. After treatment with sialidase to remove all SA, cells with NANS M117I had significantly lower SA level recovery compared to NANS wild type cells (Figure B). Conclusion: Targeted sequencing of 34 patients with aHUS identified a germline NANS variant in one case, suggesting an association between aHUS and SA biosynthesis defects. Functional studies showed that NANS knockout and the NANS M117I variant decreased cell surface SA levels. Loss of NANS also caused a decrease in CFH binding capacity and uncontrolled APC activation with increased cell death. Disclosures Chaturvedi: Alexion: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees.


1975 ◽  
Vol 53 (8) ◽  
pp. 895-902 ◽  
Author(s):  
D. Irwin ◽  
T. P. Anastassiades

1. The in vivo incorporation of radioactivity from [3H]glucosamine into a trypsin labile, cell surface sialoglycopeptide fraction (SGP) of Ehrlich ascites cells was studied in the presence and absence of puromycin pretreatment. The results indicated a much more complete inhibition of incorporation into the surface SGP than in the average intracellular acid insoluble glycoproteins. No evidence of turnover of the carbohydrate portion of the surface SGP independent of protein synthesis could be obtained.2. However, when intact cells were incubated with labelled uridine 5′-diphosphate – N-acetyl glucosamine or cytidine 5′-monophosphate (CMP) – sialic acid there was some incorporation largely into acid insoluble material, suggesting the presence of glycosyl transferase activity at the surface. Further evidence for surface activity was obtained when neuraminidase pretreatment of intact cells stimulated incorporation of labelled CMP – sialic acid sixfold and almost all of the incorporated counts could be released by subsequent neuraminidase treatment. Furthermore, a much greater proportion of the incorporated counts could be released by papain than by trypsin treatment of the intact cells. These results suggest that the surface acceptor for exogenously added CMP – sialic acid is not identical to the endogenously synthesized trypsin labile surface SGP.


2020 ◽  
Vol 8 (2) ◽  
pp. 577-585 ◽  
Author(s):  
Kimika Ono ◽  
Yuka Sanada ◽  
Yuka Kimura ◽  
Seika Aoyama ◽  
Natsumi Ueda ◽  
...  

A novel technique to form a thin hydrogel barrier on aberrantly expressed sialic acid residues on cancer cell surfaces was developed.


2001 ◽  
Vol 75 (9) ◽  
pp. 4029-4039 ◽  
Author(s):  
Jodi L. Connolly ◽  
Erik S. Barton ◽  
Terence S. Dermody

ABSTRACT Reovirus induces apoptosis in cultured cells and in vivo. Genetic studies indicate that the efficiency with which reovirus strains induce apoptosis is determined by the viral S1 gene, which encodes attachment protein ς1. However, the biochemical properties of ς1 that influence apoptosis induction are unknown. To determine whether the capacity of ς1 to bind cell surface sialic acid determines the magnitude of the apoptotic response, we used isogenic reovirus mutants that differ in the capacity to engage sialic acid. We found that T3SA+, a virus capable of binding sialic acid, induces high levels of apoptosis in both HeLa cells and L cells. In contrast, non-sialic-acid-binding strain T3SA− induces little or no apoptosis in these cell types. Differences in the capacity of T3SA− and T3SA+ to induce apoptosis are not due to differences in viral protein synthesis or production of viral progeny. Removal of cell surface sialic acid with neuraminidase abolishes the capacity of T3SA+ to induce apoptosis. Similarly, incubation of T3SA+ with sialyllactose, a trisaccharide comprised of lactose and sialic acid, blocks apoptosis. These findings demonstrate that reovirus binding to cell surface sialic acid is a critical requirement for the efficient induction of apoptosis and suggest that virus receptor utilization plays an important role in regulating cell death.


2002 ◽  
Vol 76 (12) ◽  
pp. 6037-6043 ◽  
Author(s):  
Christel Schwegmann-Weßels ◽  
Gert Zimmer ◽  
Hubert Laude ◽  
Luis Enjuanes ◽  
Georg Herrler

ABSTRACT The surface glycoprotein S of transmissible gastroenteritis virus (TGEV) has two binding activities. (i) Binding to porcine aminopeptidase N (pAPN) is essential for the initiation of infection. (ii) Binding to sialic acid residues on glycoproteins is dispensable for the infection of cultured cells but is required for enteropathogenicity. By comparing parental TGEV with mutant viruses deficient in the sialic acid binding activity, we determined the contributions of both binding activities to the attachment of TGEV to cultured cells. In the presence of a functional sialic acid binding activity, the amount of virus bound to two different porcine cell lines was increased sixfold compared to the binding of the mutant viruses. The attachment of parental virus was reduced to levels observed with the mutants when sialic acid containing inhibitors was present or when the cells were pretreated with neuraminidase. In virus overlay binding assays with immobilized cell surface proteins, the mutant virus only recognized pAPN. In addition, the parental virus bound to a high-molecular-mass sialoglycoprotein. The recognition of pAPN was sensitive to reducing conditions and was not dependent on sialic acid residues. On the other hand, binding to the sialic acid residues of the high-molecular-mass glycoprotein was observed regardless of whether the cellular proteins had been separated under reducing or nonreducing conditions. We propose that binding to a surface sialoglycoprotein is required for TGEV as a primary attachment site to initiate infection of intestinal cells. This concept is discussed in the context of other viruses that use two different receptors to infect cells.


2020 ◽  
Vol 10 (6) ◽  
pp. 7278-7283

Novel coronavirus disease (COVID-19) broke out in Wuhan, China, and has spread throughout the country, affecting many countries around the world. Because there is no etiological treatment for COVID-19, it is very urgent to find effective antiviral drugs to control the rapid spread of this disease. Remdesivir is a nucleotide prodrug that has broad-spectrum antiviral activity. It can interfere with viral RNA synthesis and play an antiviral role. This article reviews the pharmacological effects of remdesivir, some animal trials, in vitro and in vivo experiments, and clinical trials.


Sign in / Sign up

Export Citation Format

Share Document