scholarly journals Use of the Aerosol Rabbitpox Virus Model for Evaluation of Anti-Poxvirus Agents

Viruses ◽  
2010 ◽  
Vol 2 (9) ◽  
pp. 2096-2107 ◽  
Author(s):  
Chad J. Roy ◽  
Thomas G. Voss
Keyword(s):  
2021 ◽  
Vol 60 (4) ◽  
pp. 3945-3955
Author(s):  
Nadia Gul ◽  
Rubi Bilal ◽  
Ebrahem A. Algehyne ◽  
Maryam G. Alshehri ◽  
Muhammad Altaf Khan ◽  
...  

2006 ◽  
Vol 177 (1) ◽  
pp. 492-500 ◽  
Author(s):  
Richard P. Ciavarra ◽  
Amber Stephens ◽  
Sandra Nagy ◽  
Margaret Sekellick ◽  
Christina Steel

Author(s):  
Philip E. Pare ◽  
Damir Vrabac ◽  
Henrik Sandberg ◽  
Karl H. Johansson

2004 ◽  
Vol 78 (14) ◽  
pp. 7843-7845 ◽  
Author(s):  
Shohreh Zarei ◽  
Shahnaz Abraham ◽  
Jean-Francois Arrighi ◽  
Olivier Haller ◽  
Thomas Calzascia ◽  
...  

ABSTRACT Control of a viral infection in vivo requires a rapid and efficient cytotoxic-T-lymphocyte response. We demonstrate that lentivirus-mediated introduction of antigen in dendritic cells confers a protective antiviral immunity in vivo in a lymphocytic choriomeningitis virus model. Therefore, lentiviral vectors may be excellent vaccine candidates for viral infections.


2021 ◽  
Vol 1 (2) ◽  
pp. 020-027
Author(s):  
Angel San Miguel Hernández ◽  
María San Miguel Rodríguez ◽  
Angel San Miguel Rodriguez

Emerging viral diseases encompass two types, those of new appearance in the population and those that we previously knew about or re-emerging, but that at a certain moment present an exponential increase in incidence or geographic distribution in the form of epidemics or outbreaks. These emerging and re-emerging viruses share a series of characteristics that establish the emerging virus model, such as having an RNA genome, being zoonotic, transmitted by vectors and transmissible to humans, that the virus is able to recognize and provoke a response in receptors. Conserved in several species and inhabiting ecosystems that undergo ecological, demographic or social changes that favor the spread of the virus. There are different factors that contribute to facilitating the emergence of viral infections, although this is made up of three fundamental aspects such as the susceptible population, the virus itself and the environment where both can interact.


Author(s):  
C. Gokila ◽  
M. Sambath

This paper deals with stochastic Chikungunya (CHIKV) virus model along with saturated incidence rate. We show that there exists a unique global positive solution and also we obtain the conditions for the disease to be extinct. We also discuss about the existence of a unique ergodic stationary distribution of the model, through a suitable Lyapunov function. The stationary distribution validates the occurrence of disease; through that, we find the threshold value for prevail and disappear of disease within host. With the help of numerical simulations, we validate the stochastic reproduction number [Formula: see text] as stated in our theoretical findings.


1996 ◽  
Vol 184 (3) ◽  
pp. 1191-1196 ◽  
Author(s):  
H Sprenger ◽  
R G Meyer ◽  
A Kaufmann ◽  
D Bussfeld ◽  
E Rischkowsky ◽  
...  

It is characteristic for virus infections that monocytes/macrophages and lymphocytes infiltrate infected tissue while neutrophils are absent. To understand the mechanisms selectively attracting mononuclear cells in viral diseases, we examined in an influenza A virus model the expression and regulation of chemokines as candidate molecules responsible for the immigration of leukocytes into inflamed tissue. After influenza A virus infection of human monocytes, a rapid expression of the mononuclear cell attracting CC-chemokine genes MIP-1, MCP-1, and RANTES occurred which was followed by the release of chemokine proteins. In striking contrast to CC-chemokines, the expression of the prototype neutrophil CXC-chemoattractants IL-8 and GRO-alpha was completely suppressed after influenza A infection. The release of other neutrophil chemotactic factors was excluded by microchemotaxis assays. These results suggest that the virus-specific induction of mononuclear cell-attracting chemokines accounts for the preferential influx of mononuclear leukocytes into virus-infected tissue.


2003 ◽  
Vol 77 (5) ◽  
pp. 3345-3350 ◽  
Author(s):  
Marie-Noëlle Brunelle ◽  
Léa Brakier-Gingras ◽  
Guy Lemay

ABSTRACT Retroviruses use unusual recoding strategies to synthesize the Gag-Pol polyprotein precursor of viral enzymes. In human immunodeficiency virus, ribosomes translating full-length viral RNA can shift back by 1 nucleotide at a specific site defined by the presence of both a slippery sequence and a downstream stimulatory element made of an extensive secondary structure. This so-called frameshift mechanism could become a target for the development of novel antiviral strategies. A different recoding strategy is used by other retroviruses, such as murine leukemia viruses, to synthesize the Gag-Pol precursor; in this case, a stop codon is suppressed in a readthrough process, again due to the presence of a specific structure adopted by the mRNA. Development of antiframeshift agents will greatly benefit from the availability of a simple animal and virus model. For this purpose, the murine leukemia virus readthrough region was rendered inactive by mutagenesis and the frameshift region of human immunodeficiency virus was inserted to generate a chimeric provirus. This substitution of readthrough by frameshift allows the synthesis of viral proteins, and the chimeric provirus sequence was found to generate infectious viruses. This system could be a most interesting alternative to study ribosomal frameshift in the context of a virus amenable to the use of a simple animal model.


Sign in / Sign up

Export Citation Format

Share Document