scholarly journals Simultaneous Administration of Recombinant Measles Viruses Expressing Respiratory Syncytial Virus Fusion (F) and Nucleo (N) Proteins Induced Humoral and Cellular Immune Responses in Cotton Rats

Vaccines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 27 ◽  
Author(s):  
Yoshiaki Yamaji ◽  
Akihito Sawada ◽  
Yosuke Yasui ◽  
Takashi Ito ◽  
Tetsuo Nakayama

We previously reported that recombinant measles virus expressing the respiratory syncytial virus (RSV) fusion protein (F), MVAIK/RSV/F, induced neutralizing antibodies against RSV, and those expressing RSV-NP (MVAIK/RSV/NP) and M2-1 (MVAIK/RSV/M2-1) induced RSV-specific CD8+/IFN-γ+ cells, but not neutralizing antibodies. In the present study, MVAIK/RSV/F and MVAIK/RSV/NP were simultaneously administered to cotton rats and immune responses and protective effects were compared with MVAIK/RSV/F alone. Sufficient neutralizing antibodies against RSV and RSV-specific CD8+/IFN-γ+ cells were observed after re-immunization with simultaneous administration. After the RSV challenge, CD8+/IFN-γ+ increased in spleen cells obtained from the simultaneous immunization group in response to F and NP peptides. Higher numbers of CD8+/IFN-γ+ and CD4+/IFN-γ+ cells were detected in lung tissues from the simultaneous immunization group after the RSV challenge. No detectable RSV was recovered from lung homogenates in the immunized groups. Mild inflammatory reactions with the thickening of broncho-epithelial cells and the infiltration of inflammatory cells were observed in lung tissues obtained from cotton rats immunized with MVAIK/RSV/F alone after the RSV challenge. No inflammatory responses were observed after the RSV challenge in the simultaneous immunization groups. The present results indicate that combined administration with MVAIK/RSV/F and MVAIK/RSV/NP induces humoral and cellular immune responses and shows effective protection against RSV, suggesting the importance of cellular immunity.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ebrahim Kord ◽  
Farzin Roohvand ◽  
Jean Dubuisson ◽  
Thibaut Vausselin ◽  
Hosein Nasr Azadani ◽  
...  

Abstract Background Despite recent advancements, limitations in the treatment and control of hepatitis C virus (HCV) infection reprioritized the studies for invention of an efficient HCV vaccine to elicit strong neutralizing antibodies (NAbs) and cellular responses. Methods Herein, we report molecular construction of a BacMam virus-based surface display for a subtype-1a HCV gpE2 (Bac-CMV-E2-gp64; Bac) that both expressed and displayed gpE2 in mammalian cells and bacouloviral envelope, respectively. Results Assessments by western blotting, Immunofluorescence and Immunogold-electron microscopy indicated the proper expression and incorporation in insect cell and baculovirus envelope, respectively. Mice immunized in three different prime-boost immunization groups of: Bac/Bac, Bac/Pro (bacoulovirus-derived gpE2) and Bac/DNA (plasmid DNA (pCDNA)-encoding gpE2) developed high levels of IgG and IFN-γ (highest for Bac/Bac group) indicating the induction of both humeral and cellular immune responses. Calculation of the IgG2a/IgG1 and IFN-γ/IL-4 ratios indicated a Th1 polarization of immune responses in the Bac/Bac and Bac/DNA groups but a balanced Th1-Th2 phenotype in the Bac/Pro group. Sera of the mice in the Bac/Bac group provided the highest percentage of cross-NAbs against a subtype-2a HCVcc (JFH1) compared to Bac/Pro and Bac/DNA groups (62% versus 41% and 6%). Conclusions Results indicated that BacMam virus-based surface display for gpE2 might act as both subunit and DNA vaccine and offers a promising strategy for development of HCV vaccine for concurrent induction of strong humoral and cellular immune responses.


2019 ◽  
Vol 8 (4) ◽  
pp. 486
Author(s):  
López ◽  
Barriga ◽  
Lorente ◽  
Mir

Accurate antiviral humoral and cellular immune responses require prior recognition of antigenic peptides presented by human leukocyte antigen (HLA) class I and II molecules on the surface of antigen-presenting cells. Both the helper and the cytotoxic immune responses are critical for the control and the clearance of human respiratory syncytial virus (HRSV) infection, which is a significant cause of morbidity and mortality in infected pediatric, immunocompromised and elderly populations. In this article we review the immunoproteomics studies which have defined the general antigen processing and presentation rules that determine both the immunoprevalence and the immunodominance of the cellular immune response to HRSV. Mass spectrometry and functional analyses have shown that the HLA class I and II cellular immune responses against HRSV are mainly focused on three viral proteins: fusion, matrix, and nucleoprotein. Thus, these studies have important implications for vaccine development against this virus, since a vaccine construct including these three relevant HRSV proteins could efficiently stimulate the major components of the adaptive immune system: humoral, helper, and cytotoxic effector immune responses.


2017 ◽  
Vol 24 (9) ◽  
Author(s):  
Judith Falloon ◽  
H. Keipp Talbot ◽  
Craig Curtis ◽  
John Ervin ◽  
Diane Krieger ◽  
...  

ABSTRACT This is the second phase 1 study of a respiratory syncytial virus (RSV) vaccine containing RSV fusion protein (sF) adjuvanted with glucopyranosyl lipid A (GLA) in a squalene-based 2% stable emulsion (GLA-SE). In this randomized, double-blind study, 261 subjects aged ≥60 years received inactivated influenza vaccine (IIV), a vaccine containing 120 μg sF with escalating doses of GLA (1, 2.5, or 5 μg) in SE, or a vaccine containing 80 μg sF with 2.5 μg GLA in SE. Subjects receiving 120 μg sF with 2.5 or 5 μg GLA were also randomized to receive IIV or placebo. Immunity to RSV was assessed by detection of microneutralizing, anti-F immunoglobulin G, and palivizumab-competitive antibodies and F-specific gamma interferon enzyme-linked immunosorbent spot assay T-cell responses. Higher adjuvant doses increased injection site discomfort, but at the highest dose, the reactogenicity was similar to that of IIV. Significant humoral and cellular immune responses were observed. The 120 μg sF plus 5.0 μg GLA formulation resulted in the highest responses in all subjects and in older subjects. These results confirm previous observations of vaccine tolerability, safety, and immunogenicity and were used to select the 120 μg sF plus 5.0 μg GLA formulation for phase 2 evaluation. (This study has been registered at ClinicalTrials.gov under registration no. NCT02289820.)


2001 ◽  
Vol 75 (13) ◽  
pp. 5879-5890 ◽  
Author(s):  
David C. Montefiori ◽  
Jeffrey T. Safrit ◽  
Shari L. Lydy ◽  
Ashley P. Barry ◽  
Miroslawa Bilska ◽  
...  

ABSTRACT The ability to generate antibodies that cross-neutralize diverse primary isolates is an important goal for human immunodeficiency virus type 1 (HIV-1) vaccine development. Most of the candidate HIV-1 vaccines tested in humans and nonhuman primates have failed in this regard. Past efforts have focused almost entirely on the envelope glycoproteins of a small number of T-cell line-adapted strains of the virus as immunogens. Here we assessed the immunogenicity of noninfectious virus-like particles (VLP) consisting of Gag, Pro (protease), and Env from R5 primary isolate HIV-1Bx08. Immunogens were delivered to rhesus macaques in the form of either purified VLP, recombinant DNA and canarypox (ALVAC) vectors engineered to express VLP, or a combination of these products. Seroconversion to Gag and Pro was detected in all of the immunized animals. Antibodies that could neutralize HIV-1Bx08 were detected in animals that received (i) coinoculations with DNABx08 and VLPBx08, (ii) DNABx08 followed by ALVACBx08 boosting, and (iii) VLPBx08 alone. The neutralizing antibodies were highly strain specific despite the fact that they did not appear to be directed to linear epitopes in the V3 loop. Virus-specific cellular immune responses also were generated, as judged by the presence of Gag-specific gamma interferon (IFN-γ)-producing cells. These cellular immune responses required the inclusion of DNABx08 in the immunization modality, since few or no IFN-γ-producing cells were detected in animals that received either VLPBx08 or ALVACBx08 alone. The results demonstrate the feasibility of generating neutralizing antibodies and cellular immune responses that target an R5 primary HIV-1 isolate by vaccination in primates.


2007 ◽  
Vol 88 (9) ◽  
pp. 2552-2558 ◽  
Author(s):  
Beixing Liu ◽  
Yoshinobu Kimura

The effect of ageing on the local defence system against respiratory syncytial virus (RSV) infection was investigated using an aged mouse model of the senescence-accelerated mouse (SAM) strain P1. Following intranasal infection with RSV, SAM-P1 mice showed a marked loss in weight, with elevated virus growth in the lungs and prolonged virus shedding. The increased susceptibility to RSV infection was associated mainly with diminished cellular immunity by local virus-specific cytotoxic T lymphocytes and natural killer cells. The deficiency in cellular immune responses was due to a lack of clonal expansion of CD4+ and CD8+ T lymphocytes, together with an imbalance of T-helper type 1 (Th1)/Th2 cytokine production in the respiratory tract, including the lungs. Furthermore, the production of virus-specific local IgA antibody was restrained. Prolonged virus loading in the lungs of SAM-P1 mice caused a massive infiltration of CD16+/32+ inflammatory cells, which was one factor responsible for severe pneumonia. The adoptive transfer of immune-competent spleen cells achieved an appreciable protection for SAM-P1 mice against RSV challenge infection. These results suggested that age-related immune dysfunction, especially defects in cellular immune responses, accounts for the increased morbidity and mortality in RSV infection of the elderly.


2001 ◽  
Vol 82 (9) ◽  
pp. 2107-2116 ◽  
Author(s):  
Teresa R. Johnson ◽  
Julie E. Fischer ◽  
Barney S. Graham

Recombinant vaccinia viruses are well-characterized tools that can be used to define novel approaches to vaccine formulation and delivery. While vector co-expression of immune mediators has enormous potential for optimizing the composition of vaccine-induced immune responses, the impact on antigen expression and vector antigenicity must also be considered. Co-expression of IL-4 increased vaccinia virus vector titres, while IFN-γ co-expression reduced vaccinia virus replication in BALB/c mice and in C57BL/6 mice infected with some recombinant viruses. Protection against respiratory syncytial virus (RSV) challenge was similar in mice immunized with vaccinia virus expressing RSV G glycoprotein and IFN-γ, even though the replication efficiency of the vector was diminished. These data demonstrate the ability of vector-expressed cytokine to influence the virulence of the vector and to direct the development of selected immune responses. This suggests that the co-expression of cytokines and other immunomodulators has the potential to improve the safety of vaccine vectors while improving the immunogenicity of vaccine antigens.


2002 ◽  
Vol 76 (9) ◽  
pp. 4294-4303 ◽  
Author(s):  
Teresa R. Johnson ◽  
Seokmann Hong ◽  
Luc Van Kaer ◽  
Yasuhiko Koezuka ◽  
Barney S. Graham

ABSTRACT CD1d-deficient mice have normal numbers of T lymphocytes and natural killer cells but lack Vα14+ natural killer T cells. Respiratory syncytial virus (RSV) immunopathogenesis was evaluated in 129×C57BL/6, C57BL/6, and BALB/c CD1d−/− mice. CD8+ T lymphocytes were reduced in CD1d−/− mice of all strains, as shown by cell surface staining and major histocompatibility complex class I tetramer analysis, and resulted in strain-specific alterations in illness, viral clearance, and gamma interferon (IFN-γ) production. Transient activation of NK T cells in CD1d+/+ mice by α-GalCer resulted in reduced illness and delayed viral clearance. These data suggest that early IFN-γ production and efficient induction of CD8+-T-cell responses during primary RSV infection require CD1d-dependent events. We also tested the ability of α-GalCer as an adjuvant to modulate the type 2 immune responses induced by RSV glycoprotein G or formalin-inactivated RSV immunization. However, immunized CD1-deficient or α-GalCer-treated wild-type mice did not exhibit diminished disease following RSV challenge. Rather, some disease parameters, including cytokine production, eosinophilia, and viral clearance, were increased. These findings indicate that CD1d-dependent NK T cells play a role in expansion of CD8+ T cells and amplification of antiviral responses to RSV.


Author(s):  
Neil Goldstein ◽  
Viki Bockstal ◽  
Stephan Bart ◽  
Kerstin Luhn ◽  
Cynthia Robinson ◽  
...  

Abstract Background This phase 1 placebo-controlled study assessed the safety and immunogenicity of 2-dose regimens of Ad26.ZEBOV (adenovirus serotype 26 [Ad26]) and MVA-BN-Filo (modified vaccinia Ankara [MVA]) vaccines with booster vaccination at day 360. Methods Healthy US adults (N = 164) randomized into 10 groups received saline placebo or standard or high doses of Ad26 or MVA in 2-dose regimens at 7-, 14-, 28-, or 56-day intervals; 8 groups received booster Ad26 or MVA vaccinations on day 360. Participants reported solicited and unsolicited reactogenicity; we measured immunoglobulin G binding, neutralizing antibodies and cellular immune responses to Ebola virus glycoprotein. Results All regimens were well tolerated with no serious vaccine-related adverse events. Heterologous (Ad26,MVA [dose 1, dose 2] or MVA,Ad26) and homologous (Ad26,Ad26) regimens induced humoral and cellular immune responses 21 days after dose 2; responses were higher after heterologous regimens. Booster vaccination elicited anamnestic responses in all participants. Conclusions Both heterologous and homologous Ad26,MVA Ebola vaccine regimens are well tolerated in healthy adults, regardless of interval or dose level. Heterologous 2-dose Ad26,MVA regimens containing an Ebola virus insert induce strong, durable humoral and cellular immune responses. Immunological memory was rapidly recalled by booster vaccination, suggesting that Ad26 booster doses could be considered for individuals at risk of Ebola infection, who previously received the 2-dose regimen.


2003 ◽  
Vol 71 (6) ◽  
pp. 3165-3171 ◽  
Author(s):  
Vladimir Michailowsky ◽  
Keith Luhrs ◽  
Manoel Otávio C. Rocha ◽  
David Fouts ◽  
Ricardo T. Gazzinelli ◽  
...  

ABSTRACT Sera and peripheral blood mononuclear cells (PBMC) from patients displaying different clinical symptoms as well as from normal uninfected individuals (NI) were used to evaluate the humoral and cellular responses of Chagas' disease patients to Trypanosoma cruzi-derived paraflagellar rod proteins (PFR). Our results show that sera from both asymptomatic Chagas' disease patients (ACP) and cardiac Chagas' disease patients (CCP) have higher levels of antibodies to PFR than sera from NI. Immunoglobulin G1 (IgG1) and IgG3 were the main Ig isotypes that recognized PFR. We also tested three recombinant forms of PFR, named rPAR-1, rPAR-2, and rPAR-3, by Western blot analysis. Sera from seven out of eight patients with Chagas' disease recognized one of the three rPAR forms. Sera from 75, 50, and 37.5% of Chagas' disease patients tested recognized rPAR-3, rPAR-2, and rPAR-1, respectively. PFR induced proliferation of 100 and 70% of PBMC from ACP and CCP, respectively. Further, stimulation of cells from Chagas' disease patients with PFR enhanced the frequencies of both small and large CD4+ CD25+ and CD4+ CD69+ lymphocytes, as well as that of small CD8+ CD25+ lymphocytes. Finally, we evaluated the ability of PFR to elicit the production of gamma interferon (IFN-γ) by PBMC from patients with Chagas' disease. Fifty percent of the PBMC from ACP as well as CCP produced IFN-γ upon stimulation with PFR. PFR enhanced the percentages of IFN-γ-producing cells in both CD3+ and CD3− populations. Within the T-cell population, large CD4+ T lymphocytes were the main source of IFN-γ.


Sign in / Sign up

Export Citation Format

Share Document