scholarly journals A Scalable Topical Vectored Vaccine Candidate against SARS-CoV-2

Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 472 ◽  
Author(s):  
Mohammed A. Rohaim ◽  
Muhammad Munir

The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) caused an ongoing unprecedented global public health crises of coronavirus disease in 2019 (CoVID-19). The precipitously increased death rates, its impact on livelihood and trembling economies warrant the urgent development of a SARS-CoV-2 vaccine which would be safe, efficacious and scalable. Owing to unavailability of the vaccine, we propose a de novo synthesized avian orthoavulavirus 1 (AOaV-1)-based topical respiratory vaccine candidate against CoVID-19. Avirulent strain of AOaV-1 was engineered to express full length spike (S) glycoprotein which is highly neutralizing and a major protective antigen of the SARS-CoV-2. Broad-scale in vitro characterization of a recombinant vaccine candidate demonstrated efficient co-expression of the hemagglutinin-neuraminidase (HN) of AOaV-1 and S protein of SARS-CoV-2, and comparable replication kinetics were observed in a cell culture model. The recombinant vaccine candidate virus actively replicated and spread within cells independently of exogenous trypsin. Interestingly, incorporation of S protein of SARS-CoV-2 into the recombinant AOaV-1 particles attributed the sensitivity to anti-SARS-CoV-2 antiserum and more prominently to anti-AOaV-1 antiserum. Finally, our results demonstrated that the recombinant vaccine vector stably expressed S protein after multiple propagations in chicken embryonated eggs, and this expression did not significantly impact the in vitro growth characteristics of the recombinant. Taken together, the presented respiratory vaccine candidate is highly attenuated in primates per se, safe and lacking pre-existing immunity in human, and carries the potential for accelerated vaccine development against CoVID-19 for clinical studies.

2020 ◽  
Author(s):  
Mohammed A Rohaim ◽  
Muhammad Munir

AbstractThe severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) caused an ongoing unprecedented global public health crises of coronavirus disease in 2019 (CoVID-19). The precipitously increased death rates, its impact on livelihood and trembling economies warrant the urgent development of SARS-CoV-2 vaccine which would be safe, efficacious and scalable. Owing to unavailability of the vaccine, we propose a de novo synthesised avian orthoavulavirus 1 (AOaV-1)-based topical respiratory vaccine candidate against CoVID-19. Avirulent strain of Newcastle disease virus, proto-type virus of AOaV-1, was engineered to express full length spike (S) glycoprotein which is highly neutralizing and major protective antigen of the SARS-CoV-2. Broad-scale in vitro characterization of recombinant vaccine candidate demonstrated efficient co-expression of the hemagglutinin-neuraminidase (HN) of AOaV-1 and S protein of SARS-CoV-2, and comparable replication kinetics were observed in cell culture model. The recombinant vaccine candidate virus actively replicated and spread within cells independently of exogenous trypsin. Interestingly, incorporation of S protein of SARS-CoV-2 into the recombinant AOaV-1 particles attributed the sensitivity to anti-SARS-CoV-2 antiserum and more prominently to anti-AOaV-1 antiserum. Finally, our results demonstrated that the recombinant vaccine vector stably expressed S protein after multiple propagation in chicken embryonated eggs, and this expression did not significantly impact the in vitro growth characteristics of the recombinant. Taken together, the presented respiratory vaccine candidate is highly attenuated in primates per se, safe and lacking pre-existing immunity in human, and carries the potential for accelerated vaccine development against CoVID-19 for clinical studies.


2010 ◽  
Vol 54 (11) ◽  
pp. 4750-4757 ◽  
Author(s):  
Gaobing Wu ◽  
Yuzhi Hong ◽  
Aizhen Guo ◽  
Chunfang Feng ◽  
Sha Cao ◽  
...  

ABSTRACT Effective measures for the prophylaxis and treatment of anthrax are still required for counteracting the threat posed by inhalation anthrax. In this study, we first demonstrated that the chimeric protein LFn-PA, created by fusing the protective antigen (PA)-binding domain of lethal factor (LFn) to PA, retained the functions of the respective molecules. On the basis of this observation, we attempted to develop an antitoxin that targets the binding of lethal factor (LF) and/or edema factor (EF) to PA and the transportation of LF/EF. Therefore, we replaced PA in LFn-PA with a dominant-negative inhibitory PA (DPA), i.e., PAF427D. In in vitro models of anthrax intoxication, the LFn-DPA chimera showed 3-fold and 2-fold higher potencies than DPA in protecting sensitive cells against anthrax lethal toxin (LeTx) and edema toxin (EdTx), respectively. In animal models, LFn-DPA exhibited strong potency in rescuing mice from lethal challenge with LeTx. We also evaluated the immunogenicity and immunoprotective efficacy of LFn-DPA as an anthrax vaccine candidate. In comparison with recombinant PA, LFn-DPA induced significantly higher levels of the anti-PA immune response. Moreover, LFn-DPA elicited an anti-LF antibody response that could cross-react with EF. Mice immunized with LFn-DPA tolerated a LeTx challenge that was 5 times its 50% lethal dose. Thus, LFn-DPA represents a highly effective trivalent vaccine candidate for both preexposure and postexposure vaccination. Overall, we have developed a novel and dually functional reagent for the prophylaxis and treatment of anthrax.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maricarmen Rojas-Lopez ◽  
Manuele Martinelli ◽  
Valentina Brandi ◽  
Grégory Jubelin ◽  
Fabio Polticelli ◽  
...  

AbstractEnterohemorrhagic E. coli (EHEC) is a major cause of large outbreaks worldwide associated with hemorrhagic colitis and hemolytic uremic syndrome. While vaccine development is warranted, a licensed vaccine, specific for human use, against EHEC is not yet available. In this study, the reverse vaccinology approach combined with genomic, transcriptional and molecular epidemiology data was applied on the EHEC O157:H7 genome to select new potential vaccine candidates. Twenty-four potential protein antigens were identified and one of them (MC001) was successfully expressed onto Generalized Modules for Membrane Antigens (GMMA) delivery system. GMMA expressing this vaccine candidate was immunogenic, raising a specific antibody response. Immunization with the MC001 candidate was able to reduce the bacterial load of EHEC O157:H7 strain in feces, colon and caecum tissues after murine infection. MC001 is homologue to lipid A deacylase enzyme (LpxR), and to our knowledge, this is the first study describing it as a potential vaccine candidate. Gene distribution and sequence variability analysis showed that MC001 is present and conserved in EHEC and in enteropathogenic E. coli (EPEC) strains. Given the high genetic variability among and within E. coli pathotypes, the identification of such conserved antigen suggests that its inclusion in a vaccine might represent a solution against major intestinal pathogenic strains.


2019 ◽  
Author(s):  
Hong-Yun Tham ◽  
Man Kwan Ooi ◽  
Vinod RMT Balasubramaniam ◽  
Sharifah Syed Hassan ◽  
Hong-Wai Tham

AbstractThe global Zika virus (ZIKV) outbreak across continents has been drawing research attentions to researchers and healthcare professionals. It highlights the urgent development of ZIKV vaccines that offer rapid, precise and specific protection to those living in the high-risk regions - the tropical and subtropical regions. As a public health priority, there is a progressive development in the discovery of vaccine candidates and design in recent years. Many efforts have been placed in the in vitro development of ZIKV subunits as the vaccine candidate in various protein expression systems, including bacteria, yeast, plant cells, insect cells and mammalian cells. However, due to the lack of knowledge on humoral and cellular immune responses against virus vaccines, a commercialised vaccine against Dengue virus (DENV) has been suspended due to a health scare in Philippines. Moreover, the closely-related DENV and ZIKV has indicated serological cross-reactivity between both viruses. This has led to greater attentions to precautions needed during the design of ZIKV and DENV vaccines. In this study, we pre-selected, synthesised and expressed the domain III of ZIKV envelope protein (namely rEDIII) based on a previously-established report (GenBank: AMC13911.1). The characteristics of purified ZIKV rEDIII was tested using SDS-PAGE, Western blotting and LC-MS/MS. Since the ZIKV rEDIII has been well reported as a potential protein candidate in ZIKV vaccine development, we assessed the possible outcome of preexisting immunity against the rEDIII proteins by conducting dot-blotting assays using mice antisera pre-immunised with ZIKV particles (ZIKV strain: MRS_OPY_Martinique_PaRi_2015, GenBank: KU647676) . Surprisingly, the antisera was able to recognise the rEDIII of a different ZIKV strain (GenBank: AMC13911.1). Despite its great antigenicity in eliciting humoral and cellular immunity against ZIKV infection, our finding calls for greater attention to evaluate the details of ZIKV rEDIII as a stand-alone vaccine candidate.


2020 ◽  
Author(s):  
Yin-Feng Kang ◽  
Cong Sun ◽  
Zhen Zhuang ◽  
Run-Yu Yuan ◽  
Qing-Bing Zheng ◽  
...  

AbstractThe ongoing of coronavirus disease 2019 (COVID-19) pandemic caused by novel SARS-CoV-2 coronavirus, resulting in economic losses and seriously threating the human health in worldwide, highlighting the urgent need of a stabilized, easily produced and effective preventive vaccine. The SARS-COV-2 spike protein receptor binding region (RBD) plays an important role in the process of viral binding receptor angiotensin-converting enzyme 2 (ACE2) and membrane fusion, making it an ideal target for vaccine development. In this study, we designed three different RBD-conjugated nanoparticles vaccine candidates, RBD-Ferritin (24-mer), RBD-mi3 (60-mer) and RBD-I53-50 (120-mer), with the application of covalent bond linking by SpyTag-SpyCatcher system. It was demonstrated that the neutralizing capability of sera from mice immunized with three RBD-conjugated nanoparticles adjuvanted with AddaVax or Sigma Systerm Adjuvant (SAS) after each immunization was ~8-to 120-fold greater than monomeric RBD group in SARS-CoV-2 pseudovirus and authentic virus neutralization assay. Most importantly, sera from RBD-conjugated NPs groups more efficiently blocked the binding of RBD to ACE2 or neutralizing antibody in vitro, a further proof of promising immunization effect. Besides, high physical stability and flexibility in assembly consolidated the benefit for rapid scale-up production of vaccine. These results supported that our designed SARS-CoV-2 RBD-conjugated nanoparticle was competitive vaccine candidate and the carrier nanoparticles could be adopted as universal platform for future vaccine development.


2016 ◽  
Vol 23 (7) ◽  
pp. 628-637 ◽  
Author(s):  
Qingwei Luo ◽  
Tim J. Vickers ◽  
James M. Fleckenstein

EnterotoxigenicEscherichia coli(ETEC) strains are a common cause of diarrhea. Extraordinary antigenic diversity has prompted a search for conserved antigens to complement canonical approaches to ETEC vaccine development. EtpA, an immunogenic extracellular ETEC adhesin relatively conserved in the ETEC pathovar, has previously been shown to be a protective antigen following intranasal immunization. These studies were undertaken to explore alternative routes of EtpA vaccination that would permit use of a double mutant (R192G L211A) heat-labile toxin (dmLT) adjuvant. Here, oral vaccination with EtpA adjuvanted with dmLT afforded significant protection against small intestinal colonization, and the degree of protection correlated with fecal IgG, IgA, or total fecal antibody responses to EtpA. Sublingual vaccination yielded compartmentalized mucosal immune responses with significant increases in anti-EtpA fecal IgG and IgA, and mice vaccinated via this route were also protected against colonization. In contrast, while intradermal (i.d.) vaccination achieved high levels of both serum and fecal antibodies against both EtpA and dmLT, mice vaccinated via the i.d. route were not protected against subsequent colonization and the avidity of serum IgG and IgA EtpA-specific antibodies was significantly lower after i.d. immunization compared to other routes. Finally, we demonstrate that antiserum from vaccinated mice significantly impairs binding of LT to cognate GM1 receptors and shows near complete neutralization of toxin delivery by ETECin vitro. Collectively, these data provide further evidence that EtpA could complement future vaccine strategies but also suggest that additional effort will be required to optimize its use as a protective immunogen.


2020 ◽  
Author(s):  
Yuejun Shi ◽  
Jiale Shi ◽  
Limeng Sun ◽  
Yubei Tan ◽  
Gang Wang ◽  
...  

AbstractCoronaviruses that infect humans belong to the Alpha-coronavirus (including HCoV-229E) and Beta-coronavirus (including SARS-CoV and SARS-CoV-2) genera. In particular, SARS-CoV-2 is currently a major threat to public health worldwide. However, no commercial vaccines against the coronaviruses that can infect humans are available. The spike (S) homotrimers bind to their receptors through the receptor-binding domain (RBD), which is believed to be a major target to block viral entry. In this study, we selected Alpha-coronavirus (HCoV-229E) and Beta-coronavirus (SARS-CoV and SARS-CoV-2) as models. Their RBDs were observed to adopt two different conformational states (lying or standing). Then, structural and immunological analyses were used to explore differences in the immune response with RBDs among these coronaviruses. Our results showed that more RBD-specific antibodies were induced by the S trimer with the RBD in the “standing” state (SARS-CoV and SARS-CoV-2) than the S trimer with the RBD in the “lying” state (HCoV-229E), and the affinity between the RBD-specific antibodies and S trimer was also higher in the SARS-CoV and SARS-CoV-2. In addition, we found that the ability of the HCoV-229E RBD to induce neutralizing antibodies was much lower and the intact and stable S1 subunit was essential for producing efficient neutralizing antibodies against HCoV-229E. Importantly, our results reveal different vaccine strategies for coronaviruses, and S-trimer is better than RBD as a target for vaccine development in Alpha-coronavirus. Our findings will provide important implications for future development of coronavirus vaccines.ImportanceOutbreak of coronaviruses, especially SARS-CoV-2, poses a serious threat to global public health. Development of vaccines to prevent the coronaviruses that can infect humans has always been a top priority. Coronavirus spike (S) protein is considered as a major target for vaccine development. Currently, structural studies have shown that Alpha-coronavirus (HCoV-229E) and Beta-coronavirus (SARS-CoV and SARS-CoV-2) RBDs are in lying and standing state, respectively. Here, we tested the ability of S-trimer and RBD to induce neutralizing antibodies among these coronaviruses. Our results showed that Beta-CoVs RBDs are in a standing state, and their S proteins can induce more neutralizing antibodies targeting RBD. However, HCoV-229E RBD is in a lying state, and its S protein induces a low level of neutralizing antibody targeting RBD. Our results indicate that Alpha-coronavirus is more conducive to escape host immune recognition, and also provide novel ideas for the development of vaccines targeting S protein.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1098
Author(s):  
Blaine Teahan ◽  
Edison Ong ◽  
Zhenhua Yang

Tuberculosis (TB) is the leading cause of death of any single infectious agent, having led to 1.4 million deaths in 2019 alone. Moreover, an estimated one-quarter of the global population is latently infected with Mycobacterium tuberculosis (MTB), presenting a huge pool of potential future disease. Nonetheless, the only currently licensed TB vaccine fails to prevent the activation of latent TB infections (LTBI). These facts together illustrate the desperate need for a more effective TB vaccine strategy that can prevent both primary infection and the activation of LTBI. In this study, we employed a machine learning-based reverse vaccinology approach to predict the likelihood that each protein within the proteome of MTB laboratory reference strain H37Rv would be a protective antigen (PAg). The proteins predicted most likely to be a PAg were assessed for their belonging to a protein family of previously established PAgs, the relevance of their biological processes to MTB virulence and latency, and finally the immunogenic potential that they may provide in terms of the number of promiscuous epitopes within each. This study led to the identification of 16 proteins with the greatest vaccine potential for further in vitro and in vivo studies. It also demonstrates the value of computational methods in vaccine development.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1271
Author(s):  
Soheil Ghasemi ◽  
Kosar Naderi Saffar ◽  
Firooz Ebrahimi ◽  
Pezhman Khatami ◽  
Arina Monazah ◽  
...  

The recent viral infection disease pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global public health crisis. Iran, as one of the countries that reported over five million infected cases by September 2021, has been concerned with the urgent development of effective vaccines against SARS-CoV-2. In this paper, we report the results of a study on potency and safety of an inactivated SARS-CoV-2 vaccine candidate (FAKHRAVAC) in a preclinical study so as to confirm its potential for further clinical evaluation. Here, we developed a pilot-scale production of FAKHRAVAC, a purified inactivated SARS-CoV-2 virus vaccine candidate that induces neutralizing antibodies in Balb/c mice, guinea pigs, rabbits, and non-human primates (Rhesus macaques—RM). After obtaining ethical code of IR.IUMS.REC.1399.566, immunizations of animals were conducted by using either of three different vaccine dilutions; High (H): 10 μg/dose, Medium (M): 5 μg/dose, and Low (L): 1 μg/dose, respectively. In the process of screening for viral seeds, viral strains that resulted in the most severe clinical manifestation in patients have been isolated for vaccine development. The viral seed produced the optimal immunity against SARS-CoV-2 virus, which suggests a possible broader neutralizing ability against SARS-CoV-2 strains. The seroconversion rate at the H-, M-, and L-dose groups of all tested animals reached 100% by 28 days after immunization. These data support the eligibility of FAKHRAVAC vaccine candidate for further evaluation in a clinical trial.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1142
Author(s):  
Danielle Porier ◽  
Sarah Wilson ◽  
Dawn Auguste ◽  
Andrew Leber ◽  
Sheryl Coutermarsh-Ott ◽  
...  

Vaccination remains critical for viral disease outbreak prevention and control, but conventional vaccine development typically involves trade-offs between safety and immunogenicity. We used a recently discovered insect-specific flavivirus as a vector in order to develop an exceptionally safe, flavivirus vaccine candidate with single-dose efficacy. To evaluate the safety and efficacy of this platform, we created a chimeric Zika virus (ZIKV) vaccine candidate, designated Aripo/Zika virus (ARPV/ZIKV). ZIKV has caused immense economic and public health impacts throughout the Americas and remains a significant public health threat. ARPV/ZIKV vaccination showed exceptional safety due to ARPV/ZIKV’s inherent vertebrate host-restriction. ARPV/ZIKV showed no evidence of replication or translation in vitro and showed no hematological, histological or pathogenic effects in vivo. A single-dose immunization with ARPV/ZIKV induced rapid and robust neutralizing antibody and cellular responses, which offered complete protection against ZIKV-induced morbidity, mortality and in utero transmission in immune-competent and -compromised murine models. Splenocytes derived from vaccinated mice demonstrated significant CD4+ and CD8+ responses and significant cytokine production post-antigen exposure. Altogether, our results further support that chimeric insect-specific flaviviruses are a promising strategy to restrict flavivirus emergence via vaccine development.


Sign in / Sign up

Export Citation Format

Share Document