scholarly journals Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-like Particle Vaccines

Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1129
Author(s):  
Acharya Balkrishna ◽  
Vedpriya Arya ◽  
Akansha Rohela ◽  
Ashwani Kumar ◽  
Rachna Verma ◽  
...  

SARS-CoV-2 claimed numerous lives and put nations on high alert. The lack of antiviral medications and the small number of approved vaccines, as well as the recurrence of adverse effects, necessitates the development of novel treatment ways to combat COVID-19. In this context, using databases such as PubMed, Google Scholar, and Science Direct, we gathered information about nanotechnology’s involvement in the prevention, diagnosis and virus-like particle vaccine development. This review revealed that various nanomaterials like gold, polymeric, graphene and poly amino ester with carboxyl group coated magnetic nanoparticles have been explored for the fast detection of SARS-CoV-2. Personal protective equipment fabricated with nanoparticles, such as gloves, masks, clothes, surfactants, and Ag, TiO2 based disinfectants played an essential role in halting COVID-19 transmission. Nanoparticles are used not only in vaccine delivery, such as lipid nanoparticles mediated transport of mRNA-based Pfizer and Moderna vaccines, but also in the development of vaccine as the virus-like particles elicit an immune response. There are now 18 virus-like particle vaccines in pre-clinical development, with one of them, developed by Novavax, reported being in phase 3 trials. Due to the probability of upcoming COVID-19 waves, and the rise of new diseases, the future relevance of virus-like particles is imperative. Furthermore, psychosocial variables linked to vaccine reluctance constitute a critical problem that must be addressed immediately to avert pandemic.

2015 ◽  
Vol 64 (1) ◽  
pp. 3-13 ◽  
Author(s):  
ANTONINA NASKALSKA ◽  
KRZYSZTOF PYRĆ

Over the last two decades virus-like particles (VLPs) have become an important tool in biomedical research and medicine. VLPs are multiprotein structures that resemble viable virus particles in conformation but lack the viral genome. Consequently, they are non‑infectious and non‑replicative, but retain the ability to penetrate cells, making them useful for a vast spectrum of applications. Above all, VLPs mimicking genuine viruses in antigenic structure provide a safe alternative to attenuated and inactivated viruses in vaccine development. Moreover, due to their transducing proprieties, VLPs may efficiently deliver foreign nucleic acids, proteins, or conjugated compounds to the organism, or even to specific cell types. Additionally, VLPs are versatile nanovectors due to their flexibility in terms of composition and expression systems. In this review, different approaches for of virus-like particle synthesis and manipulation, as well as their potential applications, will be discussed.


2021 ◽  
Vol 29 ◽  
pp. e00605
Author(s):  
Maryam Moradi Vahdat ◽  
Farshad Hemmati ◽  
Abozar Ghorbani ◽  
Daria Rutkowska ◽  
Alireza Afsharifar ◽  
...  

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Nikolaos C. Kyriakidis ◽  
Andrés López-Cortés ◽  
Eduardo Vásconez González ◽  
Alejandra Barreto Grimaldos ◽  
Esteban Ortiz Prado

AbstractThe new SARS-CoV-2 virus is an RNA virus that belongs to the Coronaviridae family and causes COVID-19 disease. The newly sequenced virus appears to originate in China and rapidly spread throughout the world, becoming a pandemic that, until January 5th, 2021, has caused more than 1,866,000 deaths. Hence, laboratories worldwide are developing an effective vaccine against this disease, which will be essential to reduce morbidity and mortality. Currently, there more than 64 vaccine candidates, most of them aiming to induce neutralizing antibodies against the spike protein (S). These antibodies will prevent uptake through the human ACE-2 receptor, thereby limiting viral entrance. Different vaccine platforms are being used for vaccine development, each one presenting several advantages and disadvantages. Thus far, thirteen vaccine candidates are being tested in Phase 3 clinical trials; therefore, it is closer to receiving approval or authorization for large-scale immunizations.


2021 ◽  
pp. 089719002110096
Author(s):  
Shyh Poh Teo

The United States Food and Drug Administration recently issued emergency use authorization for 2 mRNA vaccines for preventing COVID-19 disease caused by SARS-CoV-2 virus infections. BNT162b2 from Pfizer-BioNTech and mRNA-1273 by Moderna are planned for use in mass-immunization programs to curb the pandemic. A brief overview of COVID-19 mRNA vaccines is provided, describing the SARS-CoV-2 RNA, how mRNA vaccines work and the advantages of mRNA over other vaccine platforms. The Pfizer-BioNTech collaboration journey to short-list mRNA vaccine candidates and finally selecting BNT162b2 based on safety data is outlined, followed by the Phase 3 study of BNT162b2 demonstrating 95% efficacy in preventing COVID-19 infections. Studies regarding mRNA-1273 (Moderna) are described, including extended immunogenicity data up to 119 days. The Phase 3 COVE study of mRNA-1273 eventually showed vaccine efficacy of 94.5%. Recommendations for future mRNA vaccine development are provided, including ongoing safety surveillance, evaluation in under-represented groups in previous studies and improving mRNA vaccine thermostability. Finally, further logistical considerations are required for manufacturing, storing, distribution and implementing mass vaccination programs to curb the pandemic.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 539
Author(s):  
Laurits Fredsgaard ◽  
Louise Goksøyr ◽  
Susan Thrane ◽  
Kara-Lee Aves ◽  
Thor G. Theander ◽  
...  

Capsid virus-like particles (cVLPs) are used as molecular scaffolds to increase the immunogenicity of displayed antigens. Modular platforms have been developed whereby antigens are attached to the surface of pre-assembled cVLPs. However, it remains unknown to what extent the employed cVLP backbone and conjugation system may influence the immune response elicited against the displayed antigen. Here, we performed a head-to-head comparison of antigen-specific IgG responses elicited by modular cVLP-vaccines differing by their employed cVLP backbone or conjugation system, respectively. Covalent antigen conjugation (i.e., employing the SpyTag/SpyCatcher system) resulted in significantly higher antigen-specific IgG titers compared to when using affinity-based conjugation (i.e., using biotin/streptavidin). The cVLP backbone also influenced the antigen-specific IgG response. Specifically, vaccines based on the bacteriophage AP205 cVLP elicited significantly higher antigen-specific IgG compared to corresponding vaccines using the human papillomavirus major capsid protein (HPV L1) cVLP. In addition, the AP205 cVLP platform mediated induction of antigen-specific IgG with a different subclass profile (i.e., higher IgG2a and IgG2b) compared to HPV L1 cVLP. These results demonstrate that the cVLP backbone and conjugation system can individually affect the IgG response elicited against a displayed antigen. These data will aid the understanding and process of tailoring modular cVLP vaccines to achieve improved immune responses.


Author(s):  
Eirini Konstantina Tafanidou ◽  
Despoina Gkentzi

: Since the emergence of SARS-CoV-2 in late December 2019, scientists have been racing against time to effectively develop a vaccine. As the techniques of personalized medicine are becoming more understood and approachable for mankind, vaccinations using such technologies could advance the treatment of all patients taking into consideration their genetic and biochemical background. As such, we anticipate that patients will be treated more effectively and potentially have less symptoms and side effects. This perspective is aiming to raise awareness of the oncoming novel treatment of diseases especially during the coronavirus pandemic.


Author(s):  
Yukun Guo ◽  
Ruizhen Guo ◽  
Yingxian Ma ◽  
Wenru Chang ◽  
Shengli Ming ◽  
...  

Background: Virus-like particles (VLPs) are non-genetic multimeric nanoparticles synthesized through in vitro or in vivo self-assembly of one or more viral structural proteins. Immunogenicity and safety of VLPs make them ideal candidates for vaccine development and efficient nanocarriers for foreign antigens or adjuvants to activate the immune system. Aims: The present study aimed to design and synthesize a chimeric VLP vaccine of the phage Qbeta (Qβ) coat protein presenting the universal epitope of the coronavirus. Methods: The RNA phage Qβ coat protein was designed and synthesized, denoted as Qbeta. The CoV epitope, a universal epitope of coronavirus, was inserted into the C-terminal of Qbeta using genetic recombination, which was designated as Qbeta-CoV. The N-terminal of Qbeta-CoV was successively inserted into the TEV restriction site using mCherry red fluorescent label and modified affinity-purified histidine label 6xHE, which was denoted as HE-Qbeta-CoV. Isopropyl β-D-1-thiogalactopyranoside (IPTG) assessment revealed the expression of Qbeta, Qbeta-CoV, and HE-Qbeta-CoV in the BL21 (DE3) cells. The fusion protein was purified by salting out using ammonium sulfate and affinity chromatography. The morphology of particles was observed using electron microscopy. The female BALB/C mice were immunized intraperitoneally with the Qbeta-CoV and HE-Qbeta-CoV chimeric VLPs vaccines. Their sera were collected for the detection of antibody level and antibody titer using ELISA. The serum is used for the neutralization test of the three viruses of MHV, PEDV, and PDCoV. Results: The results revealed that the fusion proteins Qbeta, Qbeta-CoV, and HE-Qbeta-CoV could all obtain successful expression. Particles with high purity were obtained after purification; the chimeric particles of Qbeta-CoV and HE-Qbeta-CoV were found to be similar to Qbeta particles in morphology and formed chimeric VLPs. In addition, two chimeric VLP vaccines induced specific antibody responses in mice, and the antibodies showed certain neutralizing activity. Conclusion: The successful construction of the chimeric VLPs of the phage Qβ coat protein presenting the universal epitope of coronavirus provides a vaccine form with potential clinical applications for the treatment of coronavirus disease.


2019 ◽  
Vol 164 ◽  
pp. 12-22 ◽  
Author(s):  
Jo-Yu Hong ◽  
Ting-Hsuan Chen ◽  
Yu-Jou Chen ◽  
Chia-Chyi Liu ◽  
Jia-Tsrong Jan ◽  
...  

2021 ◽  
Author(s):  
Seyed H Shahcheraghi ◽  
Jamshid Ayatollahi ◽  
Alaa AA Aljabali ◽  
Madhur D Shastri ◽  
Shakti D Shukla ◽  
...  

The COVID-19 pandemic continues to endanger world health and the economy. The causative SARS-CoV-2 coronavirus has a unique replication system. The end point of the COVID-19 pandemic is either herd immunity or widespread availability of an effective vaccine. Multiple candidate vaccines – peptide, virus-like particle, viral vectors (replicating and nonreplicating), nucleic acids (DNA or RNA), live attenuated virus, recombinant designed proteins and inactivated virus – are presently under various stages of expansion, and a small number of vaccine candidates have progressed into clinical phases. At the time of writing, three major pharmaceutical companies, namely Pfizer and Moderna, have their vaccines under mass production and administered to the public. This review aims to investigate the most critical vaccines developed for COVID-19 to date.


Sign in / Sign up

Export Citation Format

Share Document