scholarly journals Enhancement of the Local CD8+ T-Cellular Immune Response to Mycobacterium tuberculosis in BCG-Primed Mice after Intranasal Administration of Influenza Vector Vaccine Carrying TB10.4 and HspX Antigens

Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1273
Author(s):  
Kirill Vasilyev ◽  
Anna-Polina Shurygina ◽  
Natalia Zabolotnykh ◽  
Mariia Sergeeva ◽  
Ekaterina Romanovskaya-Romanko ◽  
...  

BCG is the only licensed vaccine against Mycobacterium tuberculosis (M.tb) infection. Due to its intramuscular administration route, BCG is unable to induce a local protective immune response in the respiratory system. Moreover, BCG has a diminished ability to induce long-lived memory T-cells which are indispensable for antituberculosis protection. Recently we described the protective efficacy of new mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing TB10.4 and HspX proteins of M.tb within an NS1 influenza protein open reading frame. In the present work, the innate and adaptive immune response to immunization with the Flu/THSP and the immunological properties of vaccine candidate in the BCG-prime → Flu/THSP vector boost vaccination scheme are studied in mice. It was shown that the mucosal administration of Flu/THSP induces the incoming of interstitial macrophages in the lung tissue and stimulates the expression of co-stimulatory CD86 and CD83 molecules on antigen-presenting cells. The T-cellular immune response to Flu/THSP vector was mediated predominantly by the IFNγ-producing CD8+ lymphocytes. BCG-prime → Flu/THSP vector boost immunization scheme was shown to protect mice from severe lung injury caused by M.tb infection due to the enhanced T-cellular immune response, mediated by antigen-specific effector and central memory CD4+ and CD8+ T-lymphocytes.

Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 394
Author(s):  
Mariia Sergeeva ◽  
Ekaterina Romanovskaya-Romanko ◽  
Natalia Zabolotnyh ◽  
Anastasia Pulkina ◽  
Kirill Vasilyev ◽  
...  

New strategies providing protection against tuberculosis (TB) are still pending. The airborne nature of Mycobacterium tuberculosis (M.tb) infection assumes that the mucosal delivery of the TB vaccine could be a more promising strategy than the systemic route of immunization. We developed a mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing truncated NS1 protein NS1(1–124) and a full-length TB10.4 and HspX proteins of M.tb within an NS1 protein open reading frame. The Flu/THSP vector was safe and stimulated a systemic TB-specific CD4+ and CD8+ T-cell immune response after intranasal immunization in mice. Double intranasal immunization with the Flu/THSP vector induced protection against two virulent M.tb strains equal to the effect of BCG subcutaneous injection in mice. In a guinea pig TB model, one intranasal immunization with Flu/THSP improved protection against M.tb when tested as a vaccine candidate for boosting BCG-primed immunity. Importantly, enhanced protection provided by a heterologous BCG-prime → Flu/THSP vector boost immunization scheme was associated with a significantly reduced lung and spleen bacterial burden (mean decrease of 0.77 lg CFU and 0.72 lg CFU, respectively) and improved lung pathology 8.5 weeks post-infection with virulent M.tb strain H37Rv.


2017 ◽  
Vol 66 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Alireza Hadizadeh Tasbiti ◽  
Shamsi Yari ◽  
Seyed Davar Siadat ◽  
Payam Tabarsi ◽  
Kayvan Saeedfar ◽  
...  

2021 ◽  
Author(s):  
Michael Bonelli ◽  
Daniel Mrak ◽  
Selma Tobudic ◽  
Daniela Sieghart ◽  
Maximilian Koblischke ◽  
...  

ABSTRACTSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced coronavirus disease 2019 (COVID-19) has led to exponentially rising mortality, particularly in immunosuppressed patients, who inadequately respond to conventional COVID-19 vaccination. In this blinded randomized clinical trial (EudraCT 2021-002348-57) we compare the efficacy and safety of an additional booster vaccination with a vector versus mRNA vaccine in non-seroconverted patients. We assigned 60 patients under rituximab treatment, who did not seroconvert after their primary mRNA vaccination with either BNT162b2 (Pfizer–BioNTech) or mRNA-1273 (Moderna), to receive a third dose, either using the same mRNA or the vector vaccine ChAdOx1 nCoV-19 (Oxford-AstraZeneca). Patients were stratified according to the presence of peripheral B-cells. The primary efficacy endpoint was the difference in the SARS-CoV-2 antibody seroconversion rate between vector (heterologous) and mRNA (homologous) vaccinated patients by week four. Key secondary endpoints included the overall seroconversion and cellular immune response; safety was assessed at weeks one and four.Seroconversion rates at week four were comparable between vector (6/27 patients, 22%) and mRNA (9/28, 32%) vaccine (p=0.6). Overall, 27% of patients seroconverted; specific T-cell responses were observed in 20/20 (100%) vector versus 13/16 (81%) mRNA vaccinated patients. Newly induced humoral and/or cellular responses occurred in 9/11 (82%) patients. No serious adverse events, related to immunization, were observed. This enhanced humoral and/or cellular immune response supports an additional booster vaccination in non-seroconverted patients irrespective of a heterologous or homologous vaccination regimen.


2004 ◽  
Vol 93 (2-3) ◽  
pp. 115-122 ◽  
Author(s):  
Rosa Marı́a Salazar-González ◽  
Carmen Maldonado-Bernal ◽  
Nora Elena Ramı́rez-Cruz ◽  
Nora Rios-Sarabia ◽  
Jorge Beltrán-Nava ◽  
...  

2010 ◽  
Vol 89 (4) ◽  
pp. 526-534 ◽  
Author(s):  
Marina Oliveira Paula ◽  
Denise Morais Fonseca ◽  
Pryscilla Fanini Wowk ◽  
Ana Flávia Gembre ◽  
Paola Fernanda Fedatto ◽  
...  

2021 ◽  
Author(s):  
Damon H. May ◽  
Benjamin E. R. Rubin ◽  
Sudeb C. Dalai ◽  
Krishna Patel ◽  
Shahin Shafiani ◽  
...  

The Omicron SARS-CoV-2 variant contains 34 mutations in the spike gene likely impacting protective efficacy from vaccines. We evaluated the potential impact of these mutations on the cellular immune response. Combining epitope mapping to SARS-CoV-2 vaccines that we have determined from past experiments along with T cell receptor (TCR) repertoire sequencing from thousands of vaccinated or naturally infected individuals, we estimate the abrogation of the cellular immune response in Omicron. Although 20% of CD4+ T cell epitopes are potentially affected, the loss of immunity mediated by CD4+ T cells is estimated to be slightly above 30% as some of the affected epitopes are relatively more immunogenic. For CD8+ T cells, we estimate a loss of approximately 20%. These reductions in T cell immunity are substantially larger than observed in other widely distributed variants. Combined with the expected substantial loss of neutralization from antibodies, the overall protection provided by SARS-CoV-2 vaccines could be impacted adversely. From analysis of prior variants, the efficacy of vaccines against symptomatic infection has been largely maintained and is strongly correlated with the T cell response but not as strongly with the neutralizing antibody response. We expect the remaining 70% to 80% of on-target T cells induced by SARS-CoV-2 vaccination to reduce morbidity and mortality from infection with Omicron.


2011 ◽  
Vol 152 (3-4) ◽  
pp. 328-337 ◽  
Author(s):  
Alaín González Pose ◽  
Julia Noda Gómez ◽  
Alina Venereo Sánchez ◽  
Armando Vega Redondo ◽  
Elsa Rodríguez Rodríguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document