scholarly journals Impact of Social Factors in Agricultural Production on the Crop Water Footprint in Xinjiang, China

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1145 ◽  
Author(s):  
Pei Zhang ◽  
Xiaoya Deng ◽  
Aihua Long ◽  
Yang Hai ◽  
Yang Li ◽  
...  

Irrigation plays an important role in China’s agricultural production, and a reasonable assessment of water resources consumption in agricultural production will contribute to improved agricultural water management practices. The objectives of this study were to analyze variations in the magnitude of the crop water footprint (CWF) in Xinjiang and determine the major factors that influence variation in order to provide proposals for water resources management. The CWF of Xinjiang from 1988 to 2015 was calculated, and the impacts of crop-planting structures, agricultural inputs, and water conservancy projects on agricultural water use were analyzed to evaluate the suitable amount of agricultural water utilization and area of farmland in Xinjiang. Results show that the magnitude of the CWF in Xinjiang significantly increased during the study period. Construction of water conservancy projects greatly facilitated water diversion and had the closest relationship with the growth of CWF. The appropriate water volume and planting area for agriculture in Xinjiang is calculated to be 39.4 billion m3 and 4.3 million ha, respectively, which are 73% and 65% of the current water consumption and cultivated area, respectively. These results can be used as a reference for reducing agricultural water consumption and the farmland area in Xinjiang.

2020 ◽  
Vol 12 (22) ◽  
pp. 9678
Author(s):  
Aihua Long ◽  
Pei Zhang ◽  
Yang Hai ◽  
Xiaoya Deng ◽  
Junfeng Li ◽  
...  

Scientifically determining agricultural water consumption is fundamental to the optimum allocation and regulation of regional water resources. However, traditional statistical methods used for determining agricultural water consumption in China do not reflect the actual use of water resources. This paper determined the variation in the crop water footprint (CWF) to reflect the actual agricultural water consumption in Xinjiang, China, during the past 30 years, and the data from 15 crops were included. In addition, the STIRPAT (stochastic impacts by regression on population, affluence and technology) model was used to determine the factors influencing the CWF. The results showed that the CWF in Xinjiang increased by 256% during the 30-year period. Factors such as population, agricultural added value, and effective irrigated area were correlated with an increase in the CWF. This study also showed that the implementation of national and regional policies significantly accelerated the expansion of agricultural production areas and increased the amount of agricultural water used. The objectives of this paper were to identify the factors influencing the CWF, give a new perspective for further analysis of the relationship between agricultural growth and water resources utilization, and provide a reference for local policy decision-makers in Xinjiang.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kai Huang ◽  
Mengqi Wang ◽  
Zhongren Zhou ◽  
Yajuan Yu ◽  
Yixing Bi

Beijing, the capital of China, is experiencing a serious lack of water, which is becoming a main factor in the restriction of the development of the social economy. Due to the low economic efficiency and high consumption proportion of agricultural water use, the relationship between economic growth and agricultural water use is worth investigating. The “decoupling” index is becoming increasingly popular for identifying the degree of non-synchronous variation between resource consumption and economic growth. However, few studies address the decoupling between the crop water consumption and agricultural economic growth. This paper involves the water footprint (WF) to assess the water consumption in the crop production process. After an evaluation of the crop WF in Beijing, this paper applies the decoupling indicators to examine the occurrence of non-synchronous variation between the agricultural gross domestic product (GDP) and crop WF in Beijing from 1981 to 2013. The results show that the WF of crop production in 2013 reduced by 62.1% compared to that in 1980 — in total, 1.81 × 109 m3. According to the decoupling states, the entire study period is divided into three periods. From 1981 to 2013, the decoupling states represented seventy-five percent of the years from 1981 to 1992 (Period I) with a moderate decoupling degree, more than ninety percent from 1993 to 2003 (Period II) with a very strong decoupling degree and moved from non-decoupling to strong decoupling from 2004 to 2013 (Period III). Adjusting plantation structure, technology innovation and raising awareness of water-saving, may promote the decoupling degree between WF and agricultural GDP in Beijing.


2018 ◽  
Vol 10 (10) ◽  
pp. 3556 ◽  
Author(s):  
Gang Liu ◽  
Lu Shi ◽  
Kevin Li

This paper develops a lexicographic optimization model to allocate agricultural and non-agricultural water footprints by using the land area as the influencing factor. An index known as the water-footprint-land density (WFLD) index is then put forward to assess the impact and equity of the resulting allocation scheme. Subsequently, the proposed model is applied to a case study allocating water resources for the 11 provinces and municipalities in the Yangtze River Economic Belt (YREB). The objective is to achieve equitable spatial allocation of water resources from a water footprint perspective. Based on the statistical data in 2013, this approach starts with a proper accounting for water footprints in the 11 YREB provinces. We then determined an optimal allocation of water footprints by using the proposed lexicographic optimization approach from a land area angle. Lastly, we analyzed how different types of land uses contribute to allocation equity and we discuss policy changes to implement the optimal allocation schemes in the YREB. Analytical results show that: (1) the optimized agricultural and non-agricultural water footprints decrease from the current levels for each province across the YREB, but this decrease shows a heterogeneous pattern; (2) the WFLD of 11 YREB provinces all decline after optimization with the largest decline in Shanghai and the smallest decline in Sichuan; and (3) the impact of agricultural land on the allocation of agricultural water footprints is mainly reflected in the land use structure of three land types including arable land, forest land, and grassland. The different land use structures in the upstream, midstream, and downstream regions lead to the spatial heterogeneity of the optimized agricultural water footprints in the three YREB segments; (4) In addition to the non-agricultural land area, different regional industrial structures are the main reason for the spatial heterogeneity of the optimized non-agricultural water footprints. Our water-footprint-based optimal water resources allocation scheme helps alleviate the water resources shortage pressure and achieve coordinated and balanced development in the YREB.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-1
Author(s):  
Glenn Baxter ◽  

The present study used a detailed qualitative longitudinal research approach to examine the trends of water consumption, wastewater volumes, and drainage water volumes in Oslo Airport Gardermoen, which is Norway’s major hub airport, between the years 2005 and 2020. An overall upward trend was observed in the water consumption at Oslo Airport Gardermoen, which was consistent with the growth in air traffic and aircraft movements during the study period. The annual water consumption per enplaned passenger was observed to fluctuate during the study period. While the lowest water consumption per passenger (8 liters per passenger) was recorded in 2008, the highest levels (14.6 liters per passenger) were recorded in 2020. The annual water consumption (cubic meter per aircraft movement) increased during the study period, which was consistent with the growth in aircraft movements and the use of larger aircraft. The annual wastewater volume generally increased during the study period, while the annual drainage water volume fluctuated remarkably during the study period, with the latter reflecting varying drainage patterns at the airport. Oslo Airport Gardermoen has implemented a range of sustainable water management practices to supplement its existing water management practices and policies.


2018 ◽  
Author(s):  
Xiao-Bo Luan ◽  
Ya-Li Yin ◽  
Pu-Te Wu ◽  
Shi-Kun Sun ◽  
Yu-Bao Wang ◽  
...  

Abstract. Fresh water is consumed during agricultural production. With the shortage of water resources, assessing the water use efficiency is crucial to effectively managing agricultural water resources. The water footprint is a new index for water use evaluation, and it can reflect the quantity and types of water usage during crop growth. This study aims to establish a method for calculating the region-scale water footprint of crop production based on hydrological processes. This method analyzes the water-use process during the growth of crops, which includes irrigation, precipitation, underground water, evapotranspiration, and drainage, and it ensures a more credible evaluation of water use. As illustrated by the case of the Hetao irrigation district (HID), China, the water footprints of wheat, corn and sunflower were calculated using this method. The results show that canal water loss and evapotranspiration were responsible for most of the water consumption and accounted for 47.9 % and 41.8 % of the total consumption, respectively. The total water footprints of wheat, sunflower and corn were 1380–2888 m3/t, 942–1774 m3/t, and 2095–4855 m3/t, respectively, and the blue footprint accounts for more than 86 %. The spatial distribution pattern of the green, blue and total water footprint for the three crops demonstrated that higher values occurred in the eastern part of the HID, which had more precipitation and was further from the irrigating gate. This study offers a vital reference for improving the method used to calculate the crop water footprint.


2021 ◽  
Author(s):  
fawen li ◽  
Wenhui Yan ◽  
Yong Zhao ◽  
Rengui Jiang

Abstract Because of the shortage of water resources, the phenomenon of groundwater over-extraction is widespread in many parts of the world, which has become a hot issue to be solved. The traditional idea of water resources management only considering blue water (stream flow) can't meet the demand of sustainable utilization of water resources. Blue water accounts for less than 40% of total rainfall, while green water (evapotranspiration) accounts for more than 60% of total rainfall. In the natural environment, vegetation growth mainly depends on green water, which is often neglected. Obviously, the traditional water resources management without considering green water has obvious deficiencies, which can't really reflect the regional water consumption situation in the water resources management. And only by limiting water consumption can achieve the real water saving. In addition, the mode of water resources development and utilization has changed from "supply according to demand" to "demand according to supply". In this background, for many regions with limited water resources, it is impossible to rely on excessive water intake for development, and sustainable development of regional can only be realized by truly controlling water demand. This paper chooses Shijin Irrigation District in the North China Plain as the research area, where agricultural water consumption is high and groundwater over-extraction is serious, and ecological environment is bad. In order to alleviate this situation, comprehensive regulation of water resources based ET is necessary. Therefore, this paper focuses on the concept of ET water resources management and includes green water into water resources assessment. Based on the principle of water balance, the target ET value of crops in the study area is calculated, and the ET value is taken as the target of water resources regulation. The actual water consumption is calculated by Penman-Monteith formula, and reduction of crop water consumption is obtained according to the difference between actual ET and target ET. The reduction in crop water consumption leads to a reduction in demand for water supply, which reduces groundwater extraction. The results of this study can provide necessary technical support for solving the problem of groundwater over-extraction and realizing real water saving.


2018 ◽  
Vol 22 (10) ◽  
pp. 5111-5123 ◽  
Author(s):  
Xiao-Bo Luan ◽  
Ya-Li Yin ◽  
Pu-Te Wu ◽  
Shi-Kun Sun ◽  
Yu-Bao Wang ◽  
...  

Abstract. Fresh water is consumed during agricultural production. With the shortage of water resources, assessing the water use efficiency is crucial to effectively manage agricultural water resources. The water footprint is an improved index for water use evaluation, and it can reflect the quantity and types of water usage during crop growth. This study aims to establish a method for calculating the regional-scale water footprint of crop production based on hydrological processes, and the water footprint is quantified in terms of blue and green water. This method analyses the water-use process during the growth of crops, which includes irrigation, precipitation, groundwater, evapotranspiration, and drainage, and it ensures a more credible evaluation of water use. As illustrated by the case of the Hetao irrigation district (HID), China, the water footprint of wheat, corn and sunflowers were calculated using this method. The results show that canal water loss and evapotranspiration were responsible for most of the water consumption and accounted for 47.9 % and 41.8 % of the total consumption, respectively. The total water footprint of wheat, corn and sunflowers were 1380–2888, 942–1774 and 2095–4855 m3 t−1, respectively, and the blue footprint accounts for more than 86 %. The spatial distribution pattern of the green, blue and total water footprints for the three crops demonstrated that higher values occurred in the eastern part of the HID, which had more precipitation and was further away from the irrigation gate. This study offers a vital reference for improving the method used to calculate the crop water footprint.


Sign in / Sign up

Export Citation Format

Share Document