scholarly journals Development and Integration of Sub-Daily Flood Modelling Capability within the SWAT Model and a Comparison with XAJ Model

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1263 ◽  
Author(s):  
Dachen Li ◽  
Simin Qu ◽  
Peng Shi ◽  
Xueqiu Chen ◽  
Feng Xue ◽  
...  

To date, floods have become one of the most severe natural disasters on Earth. Flood forecasting with hydrological models is an important non-engineering measure for flood control and disaster reduction. The Xin’anjiang (XAJ) model is the most widely used hydrological model in China for flood forecasting, while the Soil and Water Assessment Tool (SWAT) model is widely applied for daily and monthly simulation and has shown its potential for flood simulation. The objective of this paper is to evaluate the performance of the SWAT model in simulating floods at a sub-daily time-scale in a slightly larger basin and compare that with the XAJ model. Taking Qilijie Basin (southeast of China) as a study area, this paper developed the XAJ model and SWAT model at a sub-daily time-scale. The results showed that the XAJ model had a better performance than the sub-daily SWAT model regarding relative runoff error (RRE) but the SWAT model performed well according to relative peak discharge error (RPE) and error of occurrence time of peak flow (PTE). The SWAT model performed unsatisfactorily in simulating low flows due to the daily calculation of base flow but behaved quite well in simulating high flows. We also evaluated the effect of spatial scale on the SWAT model. The results showed that the SWAT model had a good applicability at different spatial scales. In conclusion, the sub-daily SWAT model is a promising tool for flood simulation though more improvements remain to be studied further.

2017 ◽  
Author(s):  
Dan Yu ◽  
Ping Xie ◽  
Xiaohua Dong ◽  
Xiaonong Hu ◽  
Ji Liu ◽  
...  

Abstract. Flooding represents one of the most severe natural disasters threatening the development of human society. Flood forecasting systems imbedded with hydrological models are some of the most important non-engineering measures for flood defense. The Soil and Water Assessment Tool (SWAT) is a well-designed hydrological model that is widely applied for runoff and water quality modeling. The original SWAT model is a long-term yield model. However, a daily simulation time step and continuous time marching limit the use of the SWAT model for detailed, event-based flood forecasting. In addition, SWAT uses a uniform parameter set to parameterize the Unit Hydrograph (UH) for all sub-basins, thereby ignoring the heterogeneity among the sub-basins. This paper developed a method to perform event-based flood forecasting on a sub-daily time scale based on SWAT2005. First, model programs for surface runoff and water routing were modified for a sub-daily time scale. Subsequently, the entire loop structure was broken into discrete flood events in order to obtain a SWAT-EVENT model in which antecedent soil moisture and antecedent reach storage could be obtained from daily simulations of the original SWAT model. Finally, the original lumped UH parameters were refined into distributed parameters to reflect the spatial variability of the studied area. The modified SWAT-EVENT model was used in the Wangjiaba catchment located in the upper reaches of the Huaihe River in China. Daily calibration and validation procedures were first performed for the SWAT model with long-term flow data from 1990 to 2010, after which sub-daily (Δt = 2 h) calibration and validation in the SWAT-EVENT model were conducted with 24 flood events originating primarily during the flood seasons within the same time span. Daily simulation results demonstrated acceptable model performances with Nash-Sutcliffe efficiency coefficient (ENS) values of 0.77 and 0.78 for the calibration and the validation, respectively. Event-based flood simulation results indicated reliable performances, with ENS values varying from 0.66 to 0.95. The SWAT-EVENT model, compared to the SWAT model, also improved the simulation accuracies of the flood peaks. The application of distributed UH parameters within the SWAT-EVENT model can more effectively depict the spatial variability within the study area, resulting in higher qualification ratios of the relative peak discharge error (ERP), relative peak time error (ERPT) and relative runoff volume error (ERR) relative to the application of lumped parameters.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1715 ◽  
Author(s):  
Yongchao Duan ◽  
Tie Liu ◽  
Fanhao Meng ◽  
Min Luo ◽  
Amaury Frankl ◽  
...  

Flooding, one of the most serious natural disasters, poses a significant threat to people’s lives and property. At present, the forecasting method uses simple snowmelt accumulation and has certain regional restrictions that limit the accuracy and timeliness of flood simulation and prediction. In this paper, the influence of accumulated temperature (AT) and maximum temperature (MT) on snow melting was considered in order to (1) reclassify the precipitation categories of the watershed using a separation algorithm of rain and snow that incorporates AT and MT, and (2) develop a new snow-melting process utilizing the algorithm in the Soil and Water Assessment Tool Model (SWAT) by considering the effects of AT and MT. The SWAT model was used to simulate snowmelt and flooding in the Tizinafu River Basin (TRB). We found that the modified SWAT model increased the value of the average flood peak flow by 43%, the snowmelt amounts increased by 45%, and the contribution of snowmelt to runoff increased from 44.7% to 54.07%. In comparison, we concluded the snowmelt contribution to runoff, flood peak performance, flood process simulation, model accuracy, and time accuracy. The new method provides a more accurate simulation technique for snowmelt floods and flood simulation.


2015 ◽  
Vol 12 (8) ◽  
pp. 7437-7467 ◽  
Author(s):  
J. E. Reynolds ◽  
S. Halldin ◽  
C. Y. Xu ◽  
J. Seibert ◽  
A. Kauffeldt

Abstract. Concentration times in small and medium-sized watersheds (~ 100–1000 km2) are commonly less than 24 h. Flood-forecasting models then require data at sub-daily time scales, but time-series of input and runoff data with sufficient lengths are often only available at the daily time scale, especially in developing countries. This has led to a search for time-scale relationships to infer parameter values at the time scales where they are needed from the time scales where they are available. In this study, time-scale dependencies in the HBV-light conceptual hydrological model were assessed within the generalized likelihood uncertainty estimation (GLUE) approach. It was hypothesised that the existence of such dependencies is a result of the numerical method or time-stepping scheme used in the models rather than a real time-scale-data dependence. Parameter values inferred showed a clear dependence on time scale when the explicit Euler method was used for modelling at the same time steps as the time scale of the input data (1–24 h). However, the dependence almost fully disappeared when the explicit Euler method was used for modelling in 1 h time steps internally irrespectively of the time scale of the input data. In other words, it was found that when an adequate time-stepping scheme was implemented, parameter sets inferred at one time scale (e.g., daily) could be used directly for runoff simulations at other time scales (e.g., 3 or 6 h) without any time scaling and this approach only resulted in a small (if any) model performance decrease, in terms of Nash–Sutcliffe and volume-error efficiencies. The overall results of this study indicated that as soon as sub-daily driving data can be secured, flood forecasting in watersheds with sub-daily concentration times is possible with model-parameter values inferred from long time series of daily data, as long as an appropriate numerical method is used.


2017 ◽  
Author(s):  
Aaron Havel ◽  
Ali Tasdighi ◽  
Mazdak Arabi

Abstract. This study aims to understand the long-term hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate hydrologic response of the upper Cache la Poudre watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. The effects of wildfires on land cover were accounted for in the model using the SWAT land use update module. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre and post wildfire conditions. Daily calibration and testing of the model produced very good results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 percent was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow-duration curves developed for burned sub-basins using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A strong (R2 > 0.8) and significant (p 


Author(s):  
Timketa Adula Duguma

Abstract: In this study the semi-distributed model SWAT (Soil and Water Assessment Tool), were applied to evaluate stream flow of Didessa sub basin, which is one of the major sub basins in Abay river basin of Ethiopia. The study evaluated the quality of observed meteorological and hydrological data, established SWAT hydrological model, identified the most sensitive parameters, evaluated the best distribution for flow and developed peak flow for major tributary in the sub basin. The result indicated that the SWAT model developed for the sub basin evaluated at multi hydro-gauging stations and its performance certain with the statistical measures, coefficient about determination (R2) and also Nash coefficient (NS) with values ranging 0.62 to 0.8 and 0.6 to 0.8 respectively at daily time scale. The values of R2 and NS increases at monthly time scale and found ranging 0.75 to 0.92 and 0.71 to 0.91 respectively. Sensitivity analysis is performed to identify parameters those were most sensitive for the sub basin. CN2, GWQMN, CH_K, ALPHA_BNK and LAT_TIME are the most sensitive parameters in the sub basin. Finally, the peak flow for 2-10000 returns periods were determined after the best probability distribution is identified in EasyFit computer program.


2018 ◽  
Vol 22 (4) ◽  
pp. 2527-2550 ◽  
Author(s):  
Aaron Havel ◽  
Ali Tasdighi ◽  
Mazdak Arabi

Abstract. This study aims to understand the hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate the hydrologic responses of the upper Cache la Poudre Watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. A procedure involving land use and curve number updating was implemented to assess the effects of wildfires. Application of the proposed procedure provides the ability to simulate the hydrologic response to wildfires seamlessly through mimicking the dynamic of the changes due to wildfires. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre- and post-wildfire conditions. Daily calibration and testing of the model produced “very good” results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 % was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow duration curves developed for burned sub-watersheds using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A linear regression model was developed to assess the relationship between percent burned area and runoff increase in Cache la Poudre Watershed. A strong (R2 > 0.8) and significant (p < 0.001) positive correlation was determined between runoff increase and percentage of burned area upstream. This study showed that the effects of wildfires on hydrology of a watershed are scale-dependent. Also, using full streamflow statistics through application of flow duration curves revealed that the wildfires had a higher effect on peak flows, which may increase the risk of flash floods in post-wildfire conditions.


2014 ◽  
Vol 34 (4) ◽  
pp. 789-799 ◽  
Author(s):  
Donizete dos R. Pereira ◽  
Mauro A. Martinez ◽  
André Q. de Almeida ◽  
Fernando F. Pruski ◽  
Demetrius D. da Silva ◽  
...  

Hydrological models are important tools that have been used in water resource planning and management. Thus, the aim of this work was to calibrate and validate in a daily time scale, the SWAT model (Soil and Water Assessment Tool) to the watershed of the Galo creek , located in Espírito Santo State. To conduct the study we used georeferenced maps of relief, soil type and use, in addition to historical daily time series of basin climate and flow. In modeling were used time series corresponding to the periods Jan 1, 1995 to Dec 31, 2000 and Jan 1, 2001 to Dec 20, 2003 for calibration and validation, respectively. Model performance evaluation was done using the Nash-Sutcliffe coefficient (E NS) and the percentage of bias (P BIAS). SWAT evaluation was also done in the simulation of the following hydrological variables: maximum and minimum annual daily flowsand minimum reference flows, Q90 and Q95, based on mean absolute error. E NS and P BIAS were, respectively, 0.65 and 7.2% and 0.70 and 14.1%, for calibration and validation, indicating a satisfactory performance for the model. SWAT adequately simulated minimum annual daily flow and the reference flows, Q90 and Q95; it was not suitable in the simulation of maximum annual daily flows.


2019 ◽  
Vol 38 (2) ◽  
pp. 171-192
Author(s):  
Upendo E. Msovu ◽  
Deogratias M.M. Mulungu ◽  
Joel K. Nobert ◽  
Henry Mahoo

Streamflow perturbation is highly prevalent in Kikuletwa catchment. However, little is known concerning land use/cover change (LULCC) with regard to streamflow perturbation in the catchment. This study aims to detect the historical and predict future LULCC and assess their impacts on streamflow amounts using the Soil and Water Assessment Tool (SWAT) model. Supervised classification of Landsat imagery data for 1985, 2000 and 2015 years was done in ERDAS 14 Imagine software. Future prediction of LULCC was done using Module for Land Use Change Evaluation (MOLUSCE) tool, a QGIS plug-in. An accuracy ranging from 79% to 82% was obtained for all steps. The results revealed that, from 1985 to 2000; 1985 to 2015; 1985 to 2030 and 1985 to 2050 the percentage of area change in cultivated land is +21.1%; +29.2%; +38.2% and +42.7%, respectively; forest is - 2.3%, -3.1%, -3.8% and -5.8%, respectively; and shrubland is -6.3%, -10%, -15.7% and - 16%, respectively. The performance of SWAT model during calibration were 0.74, 0.75, 0.51 and -0.5% for NSE, R2, RSR and PBIAS, respectively. The impacts of LULCC indicated that, between 1985 to 2000; 1985 to 2015; 1985 to 2030 and 1985 to 2050, the percentage increase in average simulated annual flow is 4.7%, 6.8%, 12.6% and 19.3%, respectively. Surface runoff increased from 25.2 mm (baseline) to 34.5 mm (36.9%); 36.2 mm (42.4%); 41.4 mm (64.3%) and 47.6 mm (88.9%), respectively. Base flow decreased marginally from 82.2 mm (baseline) to 79 mm (-3.8%); 77.8 mm (5.4%); 75.4 mm (-8.3%) and 73.9 mm (- 10.1%), respectively. Thus, apart from climate effects, streamflow perturbation in the catchment is also related to disturbances of catchment influences such as LULCC as revealed in this study. The study is useful for land planners and water resources managers and policy makers in managing resources sustainably. 


2021 ◽  
pp. 246-268
Author(s):  
Amit Raj ◽  
M.Siva Kumar ◽  
Satish Kumar ◽  
H.P. Singh

Water is a renewable resource for the Sustaining Ecosystem. Rapid industrialization and population impacts the climate. The imbalance of Climate changes over various geographical regions affects the hydrological and morphological behaviour of water resources. The Water balances of the system are analysed via the SWAT Model (Soil and Water Assessment Tool). By simulating and predicting future hydrological behaviour with different scenarios using many climatological models. Using weather data and predicting future hydrological outputs such as Runoff, Temperature, Base flow, groundwater flow, AET etc. in 21st century. Model is calibrated and validated using statistical methods. Results of various modelling Researches in field of SWAT and their major findings are discussed in this review paper. The future Scope of SWAT modelling and its Applications are also recommended. Forty papers are discussed in tabular form with their results and their future improvements were concluded. This paper fulfills a need for precise and quick reviews of recent researches in field of SWAT modelling with climate change on water resources. This will help researchers, academician’s insights into precise climate change impacts on water resources in 21st Century. Necessary steps to be adopted for their successful extreme repercussions of climate change and measures adopted for managing the severe damages to our Ecosystem with sustainable development goals in new millennium are discussed.


Author(s):  
J. Y. G. Santos ◽  
R. M. Silva ◽  
J. G. Carvalho Neto ◽  
S. M. G. L. Montenegro ◽  
C. A. G. Santos ◽  
...  

Abstract. This study assesses the impact of the land use and climate changes between 1967–2008 on the streamflow and sediment yield in Tapacurá River basin (Brazil) using the Soil and Water Assessment Tool (SWAT) model. The model was calibrated and validated by comparing simulated mean monthly streamflow with observed long-term mean monthly streamflow. The obtained R2 and Nash–Sutcliffe efficiency values to streamflow data were respectively 0.82 and 0.71 for 1967–1974, and 0.84 and 0.82 for 1995–2008. The results show that the land cover and climate change affected the basin hydrology, decreasing the streamflow and sediment yield (227.39 mm and 18.21 t ha−1 yr−1 for 1967–1974 and 182.86 mm and 7.67 t ha−1 yr−1 for 1995–2008). The process changes are arising mainly due to the land cover/use variability, but, mainly due to the decreasing in the rainfall rates during 1995–2008 when compared with the first period analysed, which in turn decreased the streamflow and sediments during the wet seasons and reduced the base flow during the dry seasons.


Sign in / Sign up

Export Citation Format

Share Document