scholarly journals A Coupled Model for Simulating Water and Heat Transfer in Soil-Plant-Atmosphere Continuum with Crop Growth

Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 47 ◽  
Author(s):  
Weicai Yang ◽  
Xiaomin Mao ◽  
Jian Yang ◽  
Mengmeng Ji ◽  
Adebayo J. Adeloye

Crop growth is influenced by the energy partition and water–heat transfer in the soil and canopy, while crop growth affects the land surface energy distribution and soil water-heat dynamics. In order to simulate the above processes and their interactions, a new model, named CropSPAC, was developed considering both the growth of winter wheat and the water–heat transfer in Soil-Plant-Atmosphere Continuum (SPAC). In CropSPAC, the crop module depicts the dynamic changes of leaf area index (LAI), crop height, and the root distribution and outputs them to the SPAC module, while the latter outputs soil moisture conditions for the crop module. CropSPAC was calibrated and validated by field experiment of winter wheat in Yongledian, Beijing, with five levels of irrigation treatments, namely W0 (0 mm), W1 (60 mm), W2 (110 mm), W3 (170 mm), and W4 (230 mm). Results show that CropSPAC could predict the soil water and temperature distribution, and winter wheat growth with acceptable accuracy. For example, for the 0–1 m soil water storage, the R2 for W0, W1, W2, W3, and W4 is 0.90, 0.88, 0.90, 0.91, and 0.79, and the root mean square error (RMSE) is 17.24 mm, 27.65 mm, 20.47 mm, 22.35 mm, and 12.88 mm, respectively. For soil temperature along the soil profile, the R2 ranges between 0.96 and 0.98, and the RMSE between 1.22 °C and 1.94 °C. For LAI, the R2 varied from 0.76 to 0.96, and the RMSE from 0.52 to 0.67. We further compared the simulation results by CropSPAC and its two detached modules, i.e., crop and the SPAC modules. Results demonstrate that the coupled model could better reflect the interactions between crop growth and soil moisture condition, more suitable to be used under deficit irrigation conditions.

Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 37 ◽  
Author(s):  
Yan Liang ◽  
Shahbaz Khan ◽  
Ai-xia Ren ◽  
Wen Lin ◽  
Sumera Anwar ◽  
...  

Dryland winter wheat in the Loess Plateau is facing a yield reduction due to a shortage of soil moisture and delayed sowing time. The field experiment was conducted at Loess Plateau in Shanxi, China from 2012 to 2015, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage, Nitrogen (N) accumulation, and remobilization and yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage (0–300 cm soil depth) and increased the contribution of N translocation to grain N and grain yield (17–36%). Delaying sowing time had reduced the soil water storage at sowing and winter accumulated growing degree days by about 180 °C. The contribution of N translocation to grain yield was maximum in glume + spike followed by in leaves and minimum by stem + sheath. Moreover, there was a positive relationship between the N accumulation and translocation and the soil moisture in the 20–300 cm range. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in a dry year.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1330 ◽  
Author(s):  
Yin Zhao ◽  
Xiaomin Mao ◽  
Manoj K. Shukla ◽  
Sien Li

The Soil–Water–Atmosphere–Plant (SWAP) model does not have a mulching module to simulate the effect of film mulching on soil water, heat dynamics and crop growth. In this study, SWAP model parameters were selected to simulate the soil water–heat process and crop growth, taking into account the effect of film mulching on soil evaporation, temperature, and crop growth, in order to predict the influence of future climate change on crop growth and evapotranspiration (ET). A most suitable scheme for high yield and water use efficiency (WUE) was studied by an experiment conducted in the Shiyang River Basin of Northwest China during 2017 and 2018. The experiment included mulching (M1) and non-mulching (M0) under three drip irrigation treatments, including full (WF), medium (WM), low (WL) water irrigation. Results demonstrated that SWAP simulated soil water storage (SWS) well, soil temperature at various depths, leaf area index (LAI) and aboveground dry biomass (ADB) with the normalized root mean square error (NRMSE) of 16.2%, 7.5%, 16.1% and 16.4%, respectively; and yield, ET, and WUE with the mean relative error (MRE) of 10.5%, 12.4% and 14.8%, respectively, under different treatments on average. The measured and simulated results showed film mulching could increase soil temperature, promote LAI during the early growth period, and ultimately improve ADB, yield and WUE. Among the treatments, M1WM treatment with moderate water deficit and film mulching could achieve the target of more WUE, higher yield, less irrigation water. Changes in atmospheric temperature, precipitation, and CO2 concentration are of worldwide concern. Three Representative Concentration Pathway (RCP) scenarios (RCP2.6, RCP4.5, RCP8.5) showed a negative effect on LAI, ADB and yield of seed-maize. The yield of seed-maize on an average decreased by 33.2%, 13.9% under the three RCPs scenarios for film mulching and non-mulching, respectively. Predicted yields under film mulching were lower than that under non-mulching for the next 30 years demonstrating that current film mulching management might not be suitable for this area to improve crop production under the future climate scenarios.


2021 ◽  
Author(s):  
Thuy Huu Nguyen ◽  
Matthias Langensiepen ◽  
Thomas Gaiser ◽  
Heidi Webber ◽  
Hella Ahrends ◽  
...  

<p>Drought is one of the most detrimental factors limiting crop growth and production of important staple crops such as winter wheat and maize. For both crops, stomatal regulation and change of canopy structure responses to water stress can be observed. A substantial range of stomatal behavior in regulating water loss was recently reported while the crop growth and morphological responses to drought stress depend on the intensity and duration of the imposed stress. Insights into the responses from leaf to the canopy are important for crop modeling and soil-vegetation-atmosphere models (SVAT). Stomatal responses and effects of soil water deficit on the dynamic change of canopy photosynthesis and transpiration, and seasonal crop growth of winter wheat and maize are investigated based on data collected from field-grown conditions with varying soil moisture treatments (sheltered, rainfed, irrigated) in 2016, 2017, and 2018. A reduction of leaf net photosynthesis (An), stomatal conductance (Gs), transpiration (E), and leaf water potential (LWP) was observed in the sheltered plot as compared to the rainfed and irrigated plots in winter wheat in 2016, indicating anisohydric stomatal responses. Maize showed seasonal isohydric behaviour with the minimum LWP from -1.5 to -2 MPa in 2017 and -2 to -2.7 MPa in the extremely hot and dry year in 2018. Crop growth (biomass, leaf area index, and yield) was substantially reduced under drought conditions, particularly for maize in 2018. Leaf water use efficiency (An/E) and crop WUE (total dry biomass/canopy transpiration) were not significantly different among treatments in both crops. The reduction of tiller number (in winter wheat) and leaf-rolling and plant size (in maize) resulted in a reduction of canopy transpiration, assimilation rate, and thus biomass. The seasonal isohydry in maize and the seasonal variability of LWP in winter wheat suggest a possibility to use the same critical LWP thresholds for maize and wheat to simulate the stomatal control in process-based crop and SVAT models. The canopy response such as dynamically reducing leaf area under water stress adds complexity in simulating gas exchange and crop growth rate that needs adequate consideration in the current modeling approaches.</p>


Author(s):  
Sumera Anwar ◽  
Yan Fei Liang ◽  
Shahbaz Khan ◽  
Zhi-qiang Gao

Dryland winter wheat in Loess Plateau is facing yield reduction due to shortage of soil moisture and delayed sowing time. Field experiment was conducted at Loess Plateau in Shanxi Province, China from 2012 to 2014, to study the effect of subsoiling and conventional tillage and different sowing dates on the soil water storage and contribution of N accumulation and remobilization to yield of winter wheat. The results showed that subsoiling significantly improved the soil water storage at 0-300 cm depth, improved the number of tillers and pre-anthesis N translocation in various organs of wheat and post-anthesis N accumulation, eventually increased the yield up to 17-36%. Delaying sowing time had reduced the soil water storage at sowing and winter accumulated temperature by about 180˚C. The contribution of N translocation to grain yield was maximum in glume+spike followed by in leaves and minimum by stem+sheath. In addition a close relationship was found between the N accumulation and translocation and the soil moisture in the 20-300 cm. Subsoiling during the fallow period and the medium sowing date was beneficial for improving the soil water storage and increased the N translocation to grain, thereby increasing the yield of wheat, especially in dry year.


Solid Earth ◽  
2015 ◽  
Vol 6 (4) ◽  
pp. 1157-1167 ◽  
Author(s):  
C. Y. Niu ◽  
A. Musa ◽  
Y. Liu

Abstract. Land use plays an important role in controlling spatial and temporal variations of soil moisture by influencing infiltration rates, runoff and evapotranspiration, which is important to crop growth and vegetation restoration in semiarid environments, such as Horqin sandy land in north China. However, few studies have been conducted comparing differences of dynamics of soil water conditions and the responses of soil to infiltration under different land use types in semiarid area. Five different land use types were selected to analyze soil moisture variations in relation to land use patterns during the growing season of 2 years. Results showed that soil moisture condition was affected by different land uses in semi-arid sandy soils. The higher soil moisture content among different land uses was exhibited by the grassland, followed by cropland, poplar land, inter-dunes and shrub land. The temporal variations of soil moisture in different land uses were not always consistent with the rainfall due to the dry sequence. Moreover, soil water at the surface, in the root zone and at the deep soil layer indicated statistical differences for different types of land cover. Meanwhile, temporal variations of soil moisture profile changed with precipitation. However, in the deep soil layer, there was a clear lag in response to precipitation. In addition, seasonal variations of profile soil moisture were classified into two types: increasing and waving types. And the stable soil water layer was at 80–120 cm. Furthermore, the infiltration depth exhibited a positive correlation with precipitation under all land uses. This study provided an insight into the implications for land and agricultural water management in this area.


2015 ◽  
Vol 7 (3) ◽  
pp. 1979-2009 ◽  
Author(s):  
C. Niu ◽  
A. Musa ◽  
Y. Liu

Abstract. Land use plays an important role in controlling spatial and temporal variations of soil moisture by influencing infiltration rates, runoff, and evapotranspiration, which is substantive meaning to crop growth and vegetation restoration in semiarid environments, such as the Horqin Sandy Land in north China. However, few studies have been conducted comparing differences of dynamics of soil water conditions and the responses of soil water to precipitation infiltration under different land use types in this semiarid region. Five different land use types were selected to analyze soil moisture variations in relation to land use patterns during the growing season of two years. Results showed that soil moisture condition was affected by different land uses in semi-arid sandy land. The order of soil moisture (from high to low) among different land uses was grassland, cropland, poplar land, inter-dunes and shrub land. The temporal variations of soil moisture in different land uses were not always consistent with the rainfall due to the dry sequence. Moreover, soil water in surface, root zone and deep soil layer indicated statistical difference for different land covers. Meanwhile, temporal variations of soil moisture profile changed with precipitation. However, in deep soil layer, there was a clear lag in response to precipitation. In addition, seasonal variations of profile soil moisture were classified into two types: increasing and waving types. And the stable soil water layer was at 80–120 cm. Furthermore, the infiltration depth exhibited a positive correlation with precipitation under all land uses. This study provided an insight into the implications for land and agricultural water management in this area.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


2016 ◽  
Vol 13 (1) ◽  
pp. 63-75 ◽  
Author(s):  
K. Imukova ◽  
J. Ingwersen ◽  
M. Hevart ◽  
T. Streck

Abstract. The energy balance of eddy covariance (EC) flux data is typically not closed. The nature of the gap is usually not known, which hampers using EC data to parameterize and test models. In the present study we cross-checked the evapotranspiration data obtained with the EC method (ETEC) against ET rates measured with the soil water balance method (ETWB) at winter wheat stands in southwest Germany. During the growing seasons 2012 and 2013, we continuously measured, in a half-hourly resolution, latent heat (LE) and sensible (H) heat fluxes using the EC technique. Measured fluxes were adjusted with either the Bowen-ratio (BR), H or LE post-closure method. ETWB was estimated based on rainfall, seepage and soil water storage measurements. The soil water storage term was determined at sixteen locations within the footprint of an EC station, by measuring the soil water content down to a soil depth of 1.5 m. In the second year, the volumetric soil water content was additionally continuously measured in 15 min resolution in 10 cm intervals down to 90 cm depth with sixteen capacitance soil moisture sensors. During the 2012 growing season, the H post-closed LE flux data (ETEC =  3.4 ± 0.6 mm day−1) corresponded closest with the result of the WB method (3.3 ± 0.3 mm day−1). ETEC adjusted by the BR (4.1 ± 0.6 mm day−1) or LE (4.9 ± 0.9 mm day−1) post-closure method were higher than the ETWB by 24 and 48 %, respectively. In 2013, ETWB was in best agreement with ETEC adjusted with the H post-closure method during the periods with low amount of rain and seepage. During these periods the BR and LE post-closure methods overestimated ET by about 46 and 70 %, respectively. During a period with high and frequent rainfalls, ETWB was in-between ETEC adjusted by H and BR post-closure methods. We conclude that, at most observation periods on our site, LE is not a major component of the energy balance gap. Our results indicate that the energy balance gap is made up by other energy fluxes and unconsidered or biased energy storage terms.


Author(s):  
Cássia B. Machado ◽  
José R. de S. Lima ◽  
Antonio C. D. Antonino ◽  
Eduardo S. de Souza ◽  
Rodolfo M. S. Souza ◽  
...  

ABSTRACT Studies that investigate the relationships between CO2 fluxes and evapotranspiration (ET) are important for predicting how agricultural ecosystems will respond to climate changes. However, none was made on the maize-grass intercropping system in Brazil. The aim of this study was to determine the ET and CO2 fluxes in a signal grass pasture intercropped with maize, in São João, Pernambuco, Brazil, in a drought year. Furthermore, the soil water storage (SWS) and leaf area index (LAI) were determined. The latent heat flux was the main consumer of the available energy and the daily and seasonal ET and CO2 variations were mainly controlled by rainfall, through the changes in soil water content and consequently in SWS. The agroecosystem acted as an atmospheric carbon source, during drier periods and lower LAI, and as an atmospheric carbon sink, during wetter periods and higher LAI values. In a dry year, the intercropping sequestered 2.9 t C ha-1, which was equivalent to 8.0 kg C ha-1 d-1. This study showed strong seasonal fluctuations in maize-grass intercropping CO2 fluxes, due to seasonality of rainfall, and that this agroecosystem is vulnerable to low SWS, with significant reduction in CO2 uptake during these periods.


2012 ◽  
Author(s):  
Raheleh Malekian ◽  
Robert Gordon ◽  
Ali Madani ASABE Member ◽  
Seyyed Ebrahim Hashemi

Sign in / Sign up

Export Citation Format

Share Document