scholarly journals Development of an Ice Jam Flood Forecasting System for the Lower Oder River—Requirements for Real-Time Predictions of Water, Ice and Sediment Transport

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 95 ◽  
Author(s):  
Karl-Erich Lindenschmidt ◽  
Dirk Carstensen ◽  
Wolfgang Fröhlich ◽  
Bernd Hentschel ◽  
Stefan Iwicki ◽  
...  

Despite ubiquitous warming, the lower Oder River typically freezes over almost every year. Ice jams may occur during freeze-up and ice cover breakup phases, particularly in the middle and lower reaches of the river, with weirs and piers. The slush ice and ice blocks may accumulate to form ice jams, leading to backwater effects and substantial water level rise. The small bottom slope of the lower Oder and the tidal backflow from the Baltic Sea enhance the formation of ice jams during cold weather conditions, jeopardizing the dikes. Therefore, development of an ice jam flood forecasting system for the Oder River is much needed. This commentary presents selected results from an international workshop that took place in Wrocław (Poland) on 26–27 November 2018 that brought together an international team of experts to explore the requirements and research opportunities in the field of ice jam flood forecasting and risk assessment for the Oder River section along the German–Polish border. The workshop launched a platform for collaboration amongst Canadian, German and Polish scientists, government officials and water managers to pave a way forward for joint research focused on achieving the long-term goal of forecasting, assessing and mitigating ice jam impacts along the lower Oder. German and Polish government agencies are in need of new tools to forecast ice jams and assess their subsequent consequences and risks to communities and ship navigation along a river. Addressing these issues will also help research and ice flood management in a Canadian context. A research program would aim to develop a modelling system by addressing fundamental issues that impede the prediction of ice jam events and their consequences in cold regions.

2021 ◽  
Vol 52 ◽  
pp. 102001
Author(s):  
Brandon S. Williams ◽  
Apurba Das ◽  
Peter Johnston ◽  
Bin Luo ◽  
Karl-Erich Lindenschmidt

2020 ◽  
Author(s):  
Inna Krylenko ◽  
Andrey Alabyan ◽  
Viacheslav Zelentsov ◽  
Vitaly Belikov ◽  
Alexey Sazonov ◽  
...  

<p>This paper presents the research results related to the development of an intelligent system for monitoring and assessing the state of natural systems (PROSTOR), which was tested in the area from the city of Velikiy Ustyug to the city of Kotlas on the Northern Dvina River. It is one of the most vulnerable places in Russia to spring snow-melt and ice-jams induced floods.</p><p>The proposed automated flood forecasting technology is based on the concept of a multi-model description of complex natural objects implementing a mechanism of the selection and adaptation of parameters of the most adequate model for each specific situation. The computational core of PROSTOR is the two-dimensional hydrodynamic model STREAM_2D and its newer version STREAM_2D_CUDA based on the numerical solution of the shallow water equations with discontinuous bottom. Additional hydraulic resistance due to the ice roughness and decrease in the flow cross-section due to ice-caused congestion were taken into account for modeling the ice-jams water levels. The forecasting capabilities of the system are secured by the prediction of water levels at the gauging stations located upstream from Velikiy Ustyug basing either on neural networks, or by means of linking with the runoff formation model ECOMAG and using prognostic meteorological information.</p><p>The system was built with the use of a service-oriented architecture, that provides flexible interaction between software modules, implementing hydrodynamic and hydrological models; modules of collecting and processing of heterogeneous data, including data from gauging stations and remote sensing data; control modules, etc. All system components are realized as web services and can be geographically distributed and localized in various organizations, cities and countries. All results of the system implementation, including the results of flooded zones calculations, flow parameters there, as well as satellite images are available via the geoportal.</p><p>Models parameters were justified on the base of numerical experiments and simulations of the floods of 1980-2016 period, including more than 18 significant cases of ice-jamming. Grouping of model parameters according to the height of the ice-jam induced water levels suggested for the implementation of the hydrodynamic model incorporated into intelligent information system of river floods monitoring. Operational flood forecasting mode of the system was tested during 2017 – 2019 years under support of Russian Science Foundation project № 17-11-01254.</p>


1992 ◽  
Vol 19 (2) ◽  
pp. 212-223 ◽  
Author(s):  
S. J. Stanley ◽  
R. Gerard

Much of the town of Hay River, N.W.T., is located on the low-lying land of the Hay River delta, and is subject to severe ice jam floods every decade or so. As a first line of defence against these floods, it was proposed that an ice jam flood forecast procedure be developed. The major components of the study included a review of historical flood data, resident interviews, field surveys, and observations of the delta ice regime. It was found that a 1–2 day forecast of discharge in Hay River can be directly determined from discharges measured at a Water Survey of Canada gauging station upstream. From this and from an understanding of the breakup ice regime developed from the study as well as the water level–discharge relations determined for ice jams at three locations in the delta, it was possible to develop a first-generation ice jam flood forecasting procedure that gave a 1–2 day warning of high water at each of the three locations. The procedure was evaluated against the breakup events of 1988 and 1989 with reasonable success. The development and application of this procedure is described in the paper. Key words: rivers, floods, ice jams, forecasting.


2020 ◽  
Vol 12 (4) ◽  
pp. 348-352
Author(s):  
S. Malchev ◽  
S. Savchovska

Abstract. The periods with continuous freezing air temperatures reported during the spring of 2020 (13 incidents) affected a wide range of local and introduced sweet cherry cultivars in the region of Plovdiv. They vary from -0.6°C on March 02 to -4.9°C on March 16-17. The duration of influence of the lowest temperatures is 6 and 12 hours between March 16 and 17. The inspection of fruit buds and flowers was conducted twice (on March 26 and April 08) at different phenological stages after continuous waves of cold weather conditions alternated with high temperatures. During the phenological phase ‘bud burst’ (tight cluster or BBCH 55) some of the flowers in the buds did not develop further making the damage hardly detectable. The most damaged are hybrid El.28-21 (95.00%), ‘Van’ (91.89%) and ‘Bing’ (89.41%) and from the next group ‘Lapins’ (85.98%) and ‘Rosita’ (83.33%). A larger intermediate group form ‘Kossara’ (81.67%), ‘Rozalina’ (76.00%), ‘Sunburst’ (75.00%), ‘Bigarreau Burlat’ (69.11%) and ‘Kuklenska belitza’ (66.67%). Candidate-cultivar El.17-90 ‘Asparuh’ has the lowest frost damage values of 55.00% and El.17-37 ‘Tzvetina’ with damage of 50.60%.


2000 ◽  
Vol 41 (1) ◽  
pp. 163-166 ◽  
Author(s):  
W. Gebert ◽  
P.A. Wilderer

The investigated effects of heating the filling material in trickling filters were carried out at the Ingolstadt wastewater treatment plant, Germany. Two pilot scale trickling filters were set up. Heat exchanger pipings were embedded in the filter media of one of these trickling filters, and the temperature in the trickling filter was raised. The other trickling filter was operated under normal temperature conditions, and was used as a control. The results clearly demonstrate that the performance of trickling filters cannot be constantly improved by heating the biofilm support media. A sustained increase of the metabolic rates did not occur. The decrease of the solubility of oxgen in water and mass transfer limitations caused by an increase of the biofilm thickness are the main reasons for that. Thus, the heating of trickling filters (e.g. by waste heat utilization) in order to increase the capacity of trickling filters under cold weather conditions cannot be recommended.


2015 ◽  
Vol 19 (8) ◽  
pp. 3365-3385 ◽  
Author(s):  
V. Thiemig ◽  
B. Bisselink ◽  
F. Pappenberger ◽  
J. Thielen

Abstract. The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions by the ECMWF (European Centre for Medium-Ranged Weather Forecasts) and critical hydrological thresholds. In this paper, the predictive capability is investigated in a hindcast mode, by reproducing hydrological predictions for the year 2003 when important floods were observed. Results were verified by ground measurements of 36 sub-catchments as well as by reports of various flood archives. Results showed that AFFS detected around 70 % of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (> 1 week) and large affected areas (> 10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. The case study for the flood event in March 2003 in the Sabi Basin (Zimbabwe) illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a large potential as an operational pan-African flood forecasting system, although issues related to the practical implication will still need to be investigated.


2001 ◽  
Author(s):  
Joo Heon Lee ◽  
Do Hun Lee ◽  
Sang Man Jeong ◽  
Eun Tae Lee

1955 ◽  
Vol 2 (17) ◽  
pp. 488-495 ◽  
Author(s):  
R. John Williams

AbstractObservations of fall freeze-up and spring break-up, important to subarctic hydrology and to local economy, were made at the Yukon River town of Beaver, Alaska, September 1949 to June 1950. On October 15, with river temperature at 0° C., the freezing together of floating ice crystals formed thin ice pans that gradually thickened. Falling river level and increasingly heavy ice concentration choked off all but main channels. On 25 October ice jammed downstream and produced a continuous ice cover and a temporary rise of about 1 m. at Beaver. After 26 October the river resumed its drop in level until April. Freeze-up appears governed by local channel, current and weather conditions and lacks systematic progression either upstream or downstream.Spring thaw beginning in late April thawed snow cover and weakened river ice. In early May the river began to rise slowly, but at an increasing rate, until 13 May when ice was nearly free from shore. On 14 May, after a rise of about 3 m. in 24 hours, the ice broke and moved downstream as the flood crest passed Beaver. Downstream progression of break-up is delayed by local ice jams, the chief cause of disastrous river floods, and is advanced by early break-up of large tributaries.


Sign in / Sign up

Export Citation Format

Share Document