scholarly journals Hydropower from the Alpine Cryosphere in the Era of Climate Change: The Case of the Sabbione Storage Plant in Italy

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1599 ◽  
Author(s):  
Leonardo Stucchi ◽  
Giovanni Bombelli ◽  
Alberto Bianchi ◽  
Daniele Bocchiola

Greenhouse gas reduction policies will have to rely as much as possible upon renewable, clean energy sources. Hydropower is a very good candidate, since it is the only renewable energy source whose production can be adapted to demand, and still has a large exploitation margin, especially in developing countries. However, in Europe the contribution of hydropower from the cold water in the mountain areas is at stake under rapid cryospheric down wasting under global warming. Italian Alps are no exception, with a large share of hydropower depending upon cryospheric water. We study here climate change impact on the iconic Sabbione (Hosandorn) glacier, in the Piemonte region of Italy, and the homonymous reservoir, which collects water from ice melt. Sabbione storage plant has operated since 1953 and it was, until recently, the highest altitude dam of Europe at 2460 m asl, and the former second largest dam of the Alps with 44 Mm3. We use two models, namely Poly-Hydro and Poly-Power, to assess (i) present hydrological budget and components (i.e., ice/snow melt, rainfall), and (ii) hydropower production under optimal reservoirs’ management, respectively. We then project forward hydrological cycle including Sabbione glacier’s fate, under properly downscaled climate change scenarios (three General Circulation Models, three Representative Concentration Pathways, nine scenarios overall) from IPCC until 2100, and we assess future potential for hydropower production under the reservoir’s re-operation. Mean annual discharge during 2000–2017 is estimated at 0.90 m3 s−1, with ice melt contribution of ca. 11.5%, and ice cover as measured by remote sensing changing from 4.23 km2 in 2000 to 2.94 km2 in 2017 (−30%). Mean hydropower production during 2005–2017 is estimated as 46.6 GWh. At the end of the century ice covered area would be largely depleted (0–0.37 km2), and ice melt contribution would drop largely over the century (0%–10%, 5% on average at half century, and null in practice at the end of century). Therefore, decreased ice cover, and uncertain patterns of changing precipitation, would combine to modify the future stream fluxes (−22% to −3%, −10% on average at half century, and −28% to 1%, average −13%, at the end of century). Power production, driven by seasonal demand and water availability, would change (decrease) in the future (−27% to −8%, −15% on average at half century, and −32% to −5%, −16% at the end of century). Our results demonstrate potential for decrease of cold water in this area, paradigmatic of the present state of hydropower in the Alps, and subsequent considerable hydropower losses under climate change, and claim for adaptation measures therein.

2020 ◽  
Author(s):  
Leonardo Stucchi ◽  
Giovanni Martino Bombelli ◽  
Daniele Bocchiola

<p>Hydropower, between renewable energy sources, is probably the best candidate for reducing greenhouse emission, since it is the only renewable energy source whose production can be adapted to demand, and still has a large exploitation margin, especially in developing countries. However, in Europe the contribution of hydropower from the cold water in the mountain areas is at stake under rapid cryospheric down wasting under global warming. Italian Alps are no exception, with a large share of hydropower depending upon cryospheric water. We study here climate change impact on the iconic Sabbione (Hosandorn) glacier, in the Piemonte region of Italy, and the homonymous reservoir, which collects water from ice melt. Sabbione storage plant has operated since 1953 and it was, until recently, the highest altitude dam of Europe at 2460 m asl. Using two models, namely Poly-Hydro and Poly-Power, we assessed present hydrological budget divided by components (i.e., ice/snow melt, rainfall), and hydropower production under optimal reservoirs’ management, respectively. We then project forward hydrological cycle under properly downscaled climate change scenarios (three General Circulation Models, three Representative Concentration Pathways, nine scenarios overall) from IPCC until 2100, and we assess glacier fate and consequences for hydropower production. Mean annual discharge during 2000–2017 is estimated at 0.90 m3 s−1, with ice melt contribution of ca. 11.5%, and ice cover as measured by remote sensing changing from 4.23 km2 in 2000 to 2.94 km2 in 2017 (−30%). Mean hydropower production during 2005–2017 is estimated as 46.6 GWh. At the end of the century ice covered area would be largely depleted (0–0.37 km2), and ice melt contribution would drop largely over the century (-10% to 0%, 5% on average at half century, and null in practice at the end of century). Therefore, decreased ice cover, and uncertain patterns of changing precipitation, would combine to modify the future stream fluxes (−22% to −3%, −10% on average at half century, and −28% to 1%, average −13%, at the end of century). Power production, driven by seasonal demand and water availability, would change (decrease) in the future (−27% to −8%, −15% on average at half century, and −32% to −5%, −16% at the end of century). Our results demonstrate potential for decrease of cold water in this area, paradigmatic of the present state of hydropower in the Alps, and subsequent considerable hydropower losses under climate change, and claim for adaptation measures therein.</p>


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2011
Author(s):  
Tommaso Duratorre ◽  
Giovanni Bombelli ◽  
Giovanni Menduni ◽  
Daniele Bocchiola

Present and prospective climate change will likely affect the hydrological cycle in sensitive areas, such as the Alps, thus impacting water-based activities. A most representative example is hydropower production, i.e., exploitation of water to produce energy. In the Italian Alps hydropower is strictly dependent upon water from snow and ice melt, and both are decreasing in response to global warming. Here, we study the effects of potential climate change scenarios at 2100 upon hydropower production from the Chavonne plant, in Valle d’Aosta region of Italy, a run-of-the-river (ROR) plant taking water from two high altitude glacierized catchments of Val di Cogne, and Valsavarenche. We use Poli-Hydro, a state-of-the-art hydrological model to mimic the hydrological budget of the area, including ice and snow melt share. Projections of the hydrological budget were built until 2100 by means of selected climate change scenarios, under proper downscaling. We used runs of three General Circulation Models (GCMs), EC-Earth, CCSM4, and ECHAM6.0 under three Representative Concentration Pathways RCP 2.6, RCP 4.5, and RCP 8.5 from AR5 of IPCC, and of their updated version under four Shared Socio-Economic Pathways SSP1 2.6, SSP2 4.5, SSP3 7.0, and SSP5 8.5 from AR6. We then assessed hydropower production changes against a recent control run CR period (2005–2015). Mean annual flow is estimated at 14.33 m3 s−1 during CR, with ice melt contribution ca. 2%, and snow melt contribution ca. 44%. Ice cover in 2005 was estimated as 19.2 km2, reaching in 2015, 9.93 km2. Mean hydropower production was estimated at 153.72 GWh during the CR. Temperature would largely increase throughout the century (+0.93 °C on average at the half century, +2.45 °C at the end of the century). The ice covered area would be largely depleted (ca. −86%, −94% respectively), with reduced contribution of ice melt (0.23%, <0.1%, respectively) and snow melt (ca. 37%, 33%, respectively). Precipitation would show uncertain patterns, and hence incoming discharge at the plant would erratically vary (−29% to +24% half century, −27% to +59% end of century). Hydropower production displays a large dependence upon monthly discharge patterns, with mostly positive variations (+2.90% on average at half century, +6.95% on average at end of century), with its change driven by exceedance of plant’s capacity.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 716
Author(s):  
Giovanni Martino Bombelli ◽  
Stefano Tomiet ◽  
Alberto Bianchi ◽  
Daniele Bocchiola

Ethiopia is growing fast, and the country has a dire need of energy. To avoid environmental damages, however, Ethiopia is looking for green energy polices, including hydropower exploitation, with large water availability (i.e., the Blue Nile, the greatest tributary of Nile river). Besides other dams on the Omo river, the GIBE family, Ethiopia is now building the largest hydropower plant of Africa, the GERD (Grand Ethiopian Renaissance Dam), on the Blue Nile river, leading to tensions between Ethiopia, and Egypt, due to potentially conflictive water management. In addition, present and prospective climate change may affect reservoirs’ operation, and this thereby is relevant for downstream water users, population, and environment. Here, we evaluated water management for the GERD, and GIBE III dams, under present, and future hydrological conditions until 2100. We used two models, namely, Poli-Hydro and Poli-Power, to describe (i) hydrological budget, and flow routing and (ii) optimal/maximum hydropower production from the two dams, under unconstrained (i.e., no release downstream besides MIF) and constrained (i.e., with fair release downstream) simulation. We then used climate change scenarios from the reports CMIP5/6 of the Intergovernmental Panel on Climate Change (IPCC) until 2100, to assess future hydropower production. Our results demonstrate that the filling phase of the GERD, particularly critical, have optimal filling time of 5 years or so. Stream flows at GERD could be greater than the present ones (control run CR) at half century (2050–2059), but there could be large decrease at the end of century (2090–2099). Energy production at half century may increase, and then decrease until the end of century. In GIBE III discharges would increase both at half century, and at the end of century, and so would energy production. Constrained, and unconstrained simulation provide in practice similar results, suggesting potential for shared water management in both plants.


2021 ◽  

Abstract This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "Ticks" focuses on ticks (although tick-borne pathogens creep in) and whether or not changes in climate affect the tick biosphere, from physiology to ecology. Section 3 on "Disease" focuses on the tick-host-pathogen biosphere, ranging from the triangle of tick-host-pathogen molecular interactions to disease ecology in various regions and ecosystems of the world. Each of these three sections ends with a synopsis that aims to give a brief overview of all the expert opinions within the section. The book concludes with Section 4 (Final Synopsis and Future Predictions). This synopsis attempts to summarize evidence provided by the experts of tangible impacts of climate change on ticks and tick-borne infections. In constructing their expert opinions, contributors give their views on what the future might hold. The final synopsis provides a snapshot of their expert thoughts on the future.


2021 ◽  
Author(s):  
Tim van der Schriek ◽  
Konstantinos V. Varotsos ◽  
Dimitra Founda ◽  
Christos Giannakopoulos

&lt;p&gt;Historical changes, spanning 1971&amp;#8211;2016, in the Athens Urban Heat Island (UHI) over summer were assessed by contrasting two air temperature records from established meteorological stations in urban and rural settings. When contrasting two 20-year historical periods (1976&amp;#8211;1995 and 1996&amp;#8211;2015), there is a significant difference in summer UHI regimes. The stronger UHI-intensity of the second period (1996&amp;#8211;2015) is likely linked to increased pollution and heat input. Observations suggest that the Athens summer UHI characteristics even fluctuate on multi-annual basis. Specifically, the reduction in air pollution during the Greek Economic Recession (2008-2016) probable subtly changed the UHI regime, through lowering the frequencies of extremely hot days (T&lt;sub&gt;max&lt;/sub&gt; &gt; 37 &amp;#176;C) and nights (T&lt;sub&gt;min&lt;/sub&gt; &gt; 26 &amp;#176;C).&lt;/p&gt;&lt;p&gt;Subsequently, we examined the future temporal trends of two different UHIs in Athens (Greece) under three climate change scenarios. A five-member regional climate model (RCM) sub-ensemble from EURO-CORDEX with a horizontal resolution of 0.11&amp;#176; (~12 &amp;#215; 12 km) simulated air temperature data, spanning the period 1976&amp;#8211;2100, for the two station sites. Three future emissions scenarios (RCP2.6, RCP4.5 and RCP8.5) were implanted in the simulations after 2005. The observed daily maximum and minimum air temperature data (T&lt;sub&gt;max&lt;/sub&gt; and T&lt;sub&gt;min&lt;/sub&gt;) from two historical UHI regimes (1976&amp;#8211;1995 and 1996&amp;#8211;2015, respectively) were used, separately, to bias-adjust the model simulations thus creating two sets of results.&lt;/p&gt;&lt;p&gt;This novel approach allowed us to assess future temperature developments in Athens under two different UHI intensity regimes. We found that the future frequency of days with T&lt;sub&gt;max&lt;/sub&gt; &gt; 37 &amp;#176;C in Athens was only different from rural background values under the intense UHI regime. There is a large increase in the future frequency of nights with T&lt;sub&gt;min&lt;/sub&gt; &gt; 26 &amp;#176;C in Athens under all UHI regimes and climate scenarios; these events remain comparatively rare at the rural site.&lt;/p&gt;&lt;p&gt;This study shows a large urban amplification of the frequency of extremely hot days and nights which is likely forced by increasing air pollution and heat input. Consequently, local mitigation policies aimed at decreasing urban atmospheric pollution are expected to be also effective in reducing urban temperatures during extreme heat events in Athens under all future climate change scenarios. Such policies therefore have multiple benefits, including: reducing electricity (energy) needs, improving living quality and decreasing heat- and pollution related illnesses/deaths.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter Capainolo ◽  
Utku Perktaş ◽  
Mark D. E. Fellowes

Abstract Background Climate change due to anthropogenic global warming is the most important factor that will affect future range distribution of species and will shape future biogeographic patterns. While much effort has been expended in understanding how climate change will affect rare and declining species we have less of an understanding of the likely consequences for some abundant species. The Common Grackle (Quiscalus quiscula; Linnaeus 1758), though declining in portions of its range, is a widespread blackbird (Icteridae) species in North America east of the Rocky Mountains. This study examined how climate change might affect the future range distribution of Common Grackles. Methods We used the R package Wallace and six general climate models (ACCESS1-0, BCC-CSM1-1, CESM1-CAM5-1-FV2, CNRM-CM5, MIROC-ESM, and MPI-ESM-LR) available for the future (2070) to identify climatically suitable areas, with an ecological niche modelling approach that includes the use of environmental conditions. Results Future projections suggested a significant expansion from the current range into northern parts of North America and Alaska, even under more optimistic climate change scenarios. Additionally, there is evidence of possible future colonization of islands in the Caribbean as well as coastal regions in eastern Central America. The most important bioclimatic variables for model predictions were Annual Mean Temperature, Temperature Seasonality, Mean Temperature of Wettest Quarter and Annual Precipitation. Conclusions The results suggest that the Common Grackle could continue to expand its range in North America over the next 50 years. This research is important in helping us understand how climate change will affect future range patterns of widespread, common bird species.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3358
Author(s):  
Patrik Sleziak ◽  
Roman Výleta ◽  
Kamila Hlavčová ◽  
Michaela Danáčová ◽  
Milica Aleksić ◽  
...  

The changing climate is a concern with regard to sustainable water resources. Projections of the runoff in future climate conditions are needed for long-term planning of water resources and flood protection. In this study, we evaluate the possible climate change impacts on the runoff regime in eight selected basins located in the whole territory of Slovakia. The projected runoff in the basins studied for the reference period (1981–2010) and three future time horizons (2011–2040, 2041–2070, and 2071–2100) was simulated using the HBV (Hydrologiska Byråns Vattenbalansavdelning) bucket-type model (the TUW (Technische Universität Wien) model). A calibration strategy based on the selection of the most suitable decade in the observation period for the parameterization of the model was applied. The model was first calibrated using observations, and then was driven by the precipitation and air temperatures projected by the KNMI (Koninklijk Nederlands Meteorologisch Instituut) and MPI (Max Planck Institute) regional climate models (RCM) under the A1B emission scenario. The model’s performance metrics and a visual inspection showed that the simulated runoff using downscaled inputs from both RCM models for the reference period represents the simulated hydrological regimes well. An evaluation of the future, which was performed by considering the representative climate change scenarios, indicated that changes in the long-term runoff’s seasonality and extremality could be expected in the future. In the winter months, the runoff should increase, and decrease in the summer months compared to the reference period. The maximum annual daily runoff could be more extreme for the later time horizons (according to the KNMI scenario for 2071–2100). The results from this study could be useful for policymakers and river basin authorities for the optimum planning and management of water resources under a changing climate.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 771
Author(s):  
Pak Shing Yeung ◽  
Jimmy Chi-Hung Fung ◽  
Chao Ren ◽  
Yong Xu ◽  
Kangning Huang ◽  
...  

Urbanization is one of the most significant contributing factors to anthropogenic climate change. However, a lack of projected city land use data has posed significant challenges to factoring urbanization into climate change modeling. Thus, the results from current models may contain considerable errors in estimating future climate scenarios. The Pearl River Delta region was selected as a case study to provide insight into how large-scale urbanization and different climate change scenarios impact the local climate. This study adopts projected land use data from freely available satellite imagery and applies dynamic simulation land use results to the Weather Research and Forecasting Model (WRF). The simulation periods cover the summer periods in 2010 and 2029–2031, the latter of which is averaged to represent the year 2030. The WRF simulation used the observed local climate conditions in 2010 to represent the current scenario and the projected local climate changes for 2030 as the future scenario. Under all three future climate change scenarios, the warming trend is prominent (around 1–2 °C increase), with a widespread reduction in wind speed in inland areas (1–2 ms−1). The vulnerability of human health to thermal stress was evaluated by adopting the wet-bulb globe temperature (WBGT). The results from the future scenarios suggest a high public health risk due to rising temperatures in the future. This study provides a methodology for a more comprehensive understanding of future urbanization and its impact on regional climate by using freely available satellite images and WRF simulation tools. The simulated temperature and WBGT results can serve local governments and stakeholders in city planning and the creation of action plans that will reduce the potential vulnerability of human health to excessive heat.


2017 ◽  
Vol 24 (3) ◽  
pp. 1136-1149 ◽  
Author(s):  
Kevin S. White ◽  
David P. Gregovich ◽  
Taal Levi

Sign in / Sign up

Export Citation Format

Share Document