scholarly journals A Hydrological Modeling Approach for Assessing the Impacts of Climate Change on Runoff Regimes in Slovakia

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3358
Author(s):  
Patrik Sleziak ◽  
Roman Výleta ◽  
Kamila Hlavčová ◽  
Michaela Danáčová ◽  
Milica Aleksić ◽  
...  

The changing climate is a concern with regard to sustainable water resources. Projections of the runoff in future climate conditions are needed for long-term planning of water resources and flood protection. In this study, we evaluate the possible climate change impacts on the runoff regime in eight selected basins located in the whole territory of Slovakia. The projected runoff in the basins studied for the reference period (1981–2010) and three future time horizons (2011–2040, 2041–2070, and 2071–2100) was simulated using the HBV (Hydrologiska Byråns Vattenbalansavdelning) bucket-type model (the TUW (Technische Universität Wien) model). A calibration strategy based on the selection of the most suitable decade in the observation period for the parameterization of the model was applied. The model was first calibrated using observations, and then was driven by the precipitation and air temperatures projected by the KNMI (Koninklijk Nederlands Meteorologisch Instituut) and MPI (Max Planck Institute) regional climate models (RCM) under the A1B emission scenario. The model’s performance metrics and a visual inspection showed that the simulated runoff using downscaled inputs from both RCM models for the reference period represents the simulated hydrological regimes well. An evaluation of the future, which was performed by considering the representative climate change scenarios, indicated that changes in the long-term runoff’s seasonality and extremality could be expected in the future. In the winter months, the runoff should increase, and decrease in the summer months compared to the reference period. The maximum annual daily runoff could be more extreme for the later time horizons (according to the KNMI scenario for 2071–2100). The results from this study could be useful for policymakers and river basin authorities for the optimum planning and management of water resources under a changing climate.

2021 ◽  
Author(s):  
Nima Shokri ◽  
Amirhossein Hassani ◽  
Adisa Azapagic

<p>Population growth and climate change is projected to increase the pressure on land and water resources, especially in arid and semi-arid regions. This pressure is expected to affect all driving mechanisms of soil salinization comprising alteration in soil hydrological balance, sea salt intrusion, wet/dry deposition of wind-born saline aerosols — leading to an increase in soil salinity. Soil salinity influences soil stability, bio-diversity, ecosystem functioning and soil water evaporation (1). It can be a long-term threat to agricultural activities and food security. To devise sustainable action plan investments and policy interventions, it is crucial to know when and where salt-affected soils occur. However, current estimates on spatio-temporal variability of salt-affected soils are majorly localized and future projections in response to climate change are rare. Using Machine Learning (ML) algorithms, we related the available measured soil salinity values (represented by electrical conductivity of the saturated paste soil extract, EC<sub>e</sub>) to some environmental information (or predictors including outputs of Global Circulation Models, soil, crop, topographic, climatic, vegetative, and landscape properties of the sampling locations) to develop a set of data-driven predictive tools to enable the spatio-temporal predictions of soil salinity. The outputs of these tools helped us to estimate the extent and severity of the soil salinity under current and future climatic patterns at different geographical levels and identify the salinization hotspots by the end of the 21<sup>st</sup> century in response to climate change. Our analysis suggests that a soil area of 11.73 Mkm<sup>2</sup> located in non-frigid zones has been salt-affected in at least three-fourths of the 1980 - 2018 period (2). At the country level, Brazil, Peru, Sudan, Colombia, and Namibia were estimated to have the highest rates of annual increase in the total area of soils with an EC<sub>e</sub> ≥ 4 dS m<sup>-1</sup>. Additionally, the results indicate that by the end of the 21<sup>st</sup> century, drylands of South America, southern and Western Australia, Mexico, southwest United States, and South Africa will be the salinization hotspots (compared to the 1961 - 1990 period). The results of this study could inform decision-making and contribute to attaining the United Nation’s Sustainable Development Goals for land and water resources management.</p><p>1. Shokri-Kuehni, S.M.S., Raaijmakers, B., Kurz, T., Or, D., Helmig, R., Shokri, N. (2020). Water Table Depth and Soil Salinization: From Pore-Scale Processes to Field-Scale Responses. Water Resour. Res., 56, e2019WR026707. https://doi.org/ 10.1029/2019WR026707</p><p>2. Hassani, A., Azapagic, A., Shokri, N. (2020). Predicting Long-term Dynamics of Soil Salinity and Sodicity on a Global Scale, Proc. Nat. Acad. Sci., 117, 52, 33017–33027. https://doi.org/10.1073/pnas.2013771117</p>


2019 ◽  
Vol 11 (17) ◽  
pp. 4764 ◽  
Author(s):  
Anna Sperotto ◽  
Josè Luis Molina ◽  
Silvia Torresan ◽  
Andrea Critto ◽  
Manuel Pulido-Velazquez ◽  
...  

With increasing evidence of climate change affecting the quality of water resources, there is the need to assess the potential impacts of future climate change scenarios on water systems to ensure their long-term sustainability. The study assesses the uncertainty in the hydrological responses of the Zero river basin (northern Italy) generated by the adoption of an ensemble of climate projections from 10 different combinations of a global climate model (GCM)–regional climate model (RCM) under two emission scenarios (representative concentration pathways (RCPs) 4.5 and 8.5). Bayesian networks (BNs) are used to analyze the projected changes in nutrient loadings (NO3, NH4, PO4) in mid- (2041–2070) and long-term (2071–2100) periods with respect to the baseline (1983–2012). BN outputs show good confidence that, across considered scenarios and periods, nutrient loadings will increase, especially during autumn and winter seasons. Most models agree in projecting a high probability of an increase in nutrient loadings with respect to current conditions. In summer and spring, instead, the large variability between different GCM–RCM results makes it impossible to identify a univocal direction of change. Results suggest that adaptive water resource planning should be based on multi-model ensemble approaches as they are particularly useful for narrowing the spectrum of plausible impacts and uncertainties on water resources.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1201 ◽  
Author(s):  
Pantelis Sidiropoulos ◽  
Georgios Tziatzios ◽  
Lampros Vasiliades ◽  
Nikitas Mylopoulos ◽  
Athanasios Loukas

Groundwater quantity and quality degradation by agricultural practices is recorded as one of the most critical issues worldwide. This is explained by the fact that groundwater is an important component of the hydrological cycle, since it is a source of natural enrichment for rivers, lakes, and wetlands and constitutes the main source of potable water. The need of aquifers simulation, taking into account water resources components at watershed level, is imperative for the choice of appropriate restoration management practices. An integrated water resources modeling approach, using hydrological modeling tools, is presented for assessing the nitrate fate and transport on an over-exploited aquifer with intensive and extensive agricultural activity under various operational strategies and future climate change scenarios. The results indicate that climate change affects nitrates concentration in groundwater, which is likely to be increased due to the depletion of the groundwater table and the decrease of groundwater enrichment in the future water balance. Application of operational agricultural management practices with the construction and use of water storage infrastructure tend to compensate the groundwater resources degradation due to climate change impacts.


2021 ◽  
Author(s):  
Roman Výleta ◽  
Milica Aleksić ◽  
Patrik Sleziak ◽  
Kamila Hlavcova

<p>The future development of the runoff conditions, as a consequence of climate change, is of great interest for water managers. Information about the potential impacts of climate change on the hydrological regime is needed for long-term planning of water resources and flood protection.</p><p>The aim of this study is to evaluate the possible impacts of climate change on the runoff regime in five selected catchments located in the territory of Slovakia. Changes in climatic characteristics (i.e., precipitation and air temperature) for future time horizons were prepared by a regional climate model KNMI using the A1B emission scenario. The selected climatic scenario predicts a general increase in air temperature and precipitation (higher in winter than in summer). For simulations of runoff under changed conditions, a lumped rainfall-runoff model (the TUW model) was used. This model belongs to a group of conceptual models and follows a structure of a widely used Swedish HBV model. The TUW model was calibrated for the period of 2011 – 2019. We assumed that this period would be similar (to recent/warmer climate) in terms of the average daily air temperatures and daily precipitation totals. The future changes in runoff due to climate change were evaluated by comparing the simulated long-term mean monthly runoff for the current state (1981-2010) and modelled scenarios in three time periods (2011-2040, 2041-2070, and 2071-2100). The results indicate that changes in the long-term runoff seasonality and extremality of hydrological cycle could be expected in the future. The runoff should increase in winter months compared to the reference period. This increase is probably related to a rise in temperature and anticipated snowmelt. Conversely, during the summer periods, a decrease in the long-term runoff could be assumed. According to modelling, these changes will be more pronounced in the later time horizons.</p><p>It should be noted that the results of the simulation are dependent on the availability of the inputs, the hydrological/climate model used, the schematization of the simulated processes, etc. Therefore, they need to be interpreted with a sufficient degree of caution</p>


2016 ◽  
Vol 8 (1) ◽  
pp. 10-21
Author(s):  
Narayan P Gautam ◽  
Manohar Arora ◽  
N.K. Goel ◽  
A.R.S. Kumar

Climate change has been emerging as one of the challenges in the global environment. Information of predicted climatic changes in basin scale is highly useful to know the future climatic condition in the basin that ultimately becomes helpful to carry out planning and management of the water resources available in the basin. Climatic scenario is a plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change. This study based on statistical downscaling, provide good example focusing on predicting the rainfall and runoff patterns, using the coarse general circulation model (GCM) outputs. The outputs of the GCMs are utilized to study the impact of climate change on water resources. The present study has been taken up to identify the climate change scenarios for Satluj river basin, India.Journal of Hydrology and Meteorology, Vol. 8(1) p.10-21


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2153 ◽  
Author(s):  
Álvaro Campos ◽  
José María García-Valdecasas ◽  
Rafael Molina ◽  
Carmen Castillo ◽  
Enrique Álvarez-Fanjul ◽  
...  

Ports are strategic hubs of the logistic chain and are likely to be exposed to natural hazard events. Variation of metocean agents derived from climate change, such as sea level rise or changes in the magnitude, frequency, duration, and direction of storms, can modify the infrastructural and operational vulnerability of port areas and activities, demanding the development of adaptation or mitigation strategies. In this context, the present paper is aimed to propose a downscaling methodology for addressing local effects at port scale. In addition, based on previously identifying and defining the Areas of Operational Interest (AOIs) inside ports, an approach towards the evaluation of operational vulnerability is offered. The whole process is applied, as a practical case, to the Port of Gijón (Spain) for different General Circulation Models (GCMs), concentration scenarios, and time horizons. The results highlight, in line with other publications, that inter-model differences are, so far, more significant than intra-model differences from dissimilar time horizons or concentration scenarios.


2020 ◽  
Vol 20 (4) ◽  
pp. 251-259
Author(s):  
Joonhyeok Ha ◽  
Heeseong Park ◽  
Gunhui Chung

Snow vulnerability analysis was implemented using 400 years of controlled RCP 2.6, 4.5, 6.0, and 8.5 scenarios in the following divided periods: the former period (2011-2040), middle period (2041-2070), and later period (2071-2100). Data from a total of 74 meteorological stations were used and the Thiessen polygon method was applied in the areas without stations. The indicators were classified into the Pressure-State-Response (PSR) structure, and the weight for vulnerability analysis was calculated using the entropy method. As snow vulnerability analysis was implemented for the future scenarios, it was difficult to determine social and economic factors as indicators; thus, only predicted weather data and population trends were considered. As a result, the rankings for snow vulnerable areas were determined for each period and scenario. Overall, snow vulnerability would decrease due to the decrease in long-term heavy snowfall in climate change scenarios. However, increased snow vulnerability is also expected in Sejong-si and the western coastal area due to a rise in population and snow depth in the future. Based on this, disaster prevention projects considering the characteristics of the region in the future could be implemented.


2017 ◽  
pp. 114-122
Author(s):  
N.S. Loboda ◽  
Y.V. Bozhok

Data of climate change scenarios RCP8.5 and RCP4.5 (Representative Concentration Pathways) were used. They were proposed for consideration in the Fifth Report of Intergovernmental Panel on Climate Change. Average long-term annual flow values using meteorological data (air temperature and precipitation) from the scenarios for the period 2011-2050 were calculated. 84 points (grid nodes) uniformly distributed on the territory of Ukraine were studied. The calculations were made based on the model "climate-runoff", developed in Odessa State Environmental University. Projection of changes in water resources was given by comparing the calculation results in the past (before 1989) and in the future (2011-2050). The major trends in water resources of Ukraine were established. It is shown that by the middle of the XXI century reducing of water resources is expected on the plain territory of Ukraine (70% in the southeast). In the geographical zone of the Ukrainian Carpathians, especially in the Tisa river basin, its stability or growth is possible. Analysis of changes in the ratio of moisture and heat resources showed that climate aridity will be intensify and the insufficient moisture zone and the semiarid zone will be widen.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


Author(s):  
Eulalia Gómez Martín ◽  
María Máñez Costa ◽  
Sabine Egerer ◽  
Uwe Schneider

Sign in / Sign up

Export Citation Format

Share Document