scholarly journals Effect of Hydraulic Retention Time on the Treatment of Real Cattle Slaughterhouse Wastewater and Biogas Production from HUASB Reactor

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 490
Author(s):  
Mohammed Ali Musa ◽  
Syazwani Idrus

Anaerobic digestion technology provides an alternative route for sustainable management of organic waste. In this study, the performance of the hybrid upflow anaerobic sludge blanket (HUASB) reactor consisting of synthetic grass media as attached growth surface was investigated for the treatment of cattle slaughterhouse wastewater under mesophilic (35 ± 1 °C) condition. After acclimatization with synthetic wastewater, the reactor was loaded up to OLR 10 g L−1d−1, corresponding to 20 g COD/L at a varying hydraulic retention time (HRT) of 24, 30, 36, 42, and 48 h. The system attained a maximum COD removal efficiency of 97% total suspended solids (TSS), volatile suspended solids (VSS), fats, oil, and grease (FOG), color removal, and turbidity were found as 97%, 284 mg/L, 79%, 78%, and 91% respectively. The biogas production after 48 h was found as 38 L/d, with about 85% methane and specific methane production of 0.24 LCH4/gCODadded. The ratio of alkalinity was 0.22, while ammonia nitrogen concentration reached a maximum of 839 mg/L at a steady state. Scanning electron microscopic (SEM) analysis revealed a predominance of Methanosarcina bacteria with the coccoidal shape at the end of the performance study. Therefore, the results of the experiment showed that increasing HRT significantly affects the performance of the system.

2004 ◽  
Vol 49 (1) ◽  
pp. 95-102 ◽  
Author(s):  
H.H.P. Fang ◽  
Y. Liu ◽  
S.Z. Ke ◽  
T. Zhang

Treating a synthetic wastewater containing phenol as the sole substrate at 26°C, an upflow anaerobic sludge blanket reactor was able to remove over 98% of phenol up to 1,260 mg/l in wastewater with 12 h of hydraulic retention time, corresponding to 6.0 g-COD/(l·day). Results showed that benzoate was the key intermediate of phenol degradation. Conversion of benzoate to methane was suppressed by the presence of phenol. Based on DNA cloning analysis, the sludge was composed of five groups of microorganisms. Desulfotomaculum and Clostridium were likely responsible for the conversion of phenol to benzoate, which was further degraded by Syntrophus to acetate and H2/CO2. Methanogens lastly converted acetate and H2/CO2 to methane. The role of epsilon-Proteobacteria was, however, unclear.


Author(s):  
Mohammed Ali Musa ◽  
Syazwani Idrus ◽  
Mohd Razif Harun ◽  
Tuan Farhana Tuan Mohd Marzuki ◽  
Abdul Malek Abdul Wahab

Cattle slaughterhouses generate wastewater that is rich in organic contaminant and nutrients, which is considered as high strength wastewater with a high potential for energy recovery. Work was undertaken to evaluate the efficiency of the 12 L laboratory scale conventional and a modified upflow anaerobic sludge blanket (UASB) reactors (conventional, R1 and modified, R2), for treatment of cattle slaughterhouse wastewater (CSWW) under mesophilic condition (35 ± 1 °C). Both reactors were acclimated with synthetic wastewater for 30 days, then continuous study with real CSWW proceeds. The reactors were subjected to the same loading condition of OLR, starting from 1.75, 3, 5 10, 14, and 16 g L−1d−1, corresponding to 3.5, 6, 10, 20, 28, and 32 g COD/L at constant hydraulic retention time (HRT) of 24 h. The performance of the R1 reactor drastically dropped at OLR 10 g L−1d−1, and this significantly affected the subsequent stages. The steady-state performance of the R2 reactor under the same loading condition as the R1 reactor revealed a high COD removal efficiency of 94% and biogas and methane productions were 27 L/d and 89%. The SMP was 0.21 LCH4/gCOD added, whereas the NH3-N alkalinity ratio stood at 651 mg/L and 0.2. SEM showed that the R2 reactor was dominated by Methanosarcina bacterial species, while the R1 reactor revealed a disturb sludge with insufficient microbial biomass.


2013 ◽  
Vol 1 (4) ◽  
pp. 458
Author(s):  
Dilek ÖZGÜN ◽  
Serden BAŞAK ◽  
Kevser CIRIK ◽  
ARZU KILIÇ ◽  
Dilek Akman ◽  
...  

Anaerobik amonyum oksidasyonu (Anammox) anoksik ortamda amonyumun elektron verici nitritin elektron alıcı olarak azot gazına oksitlendiği proses olarak bilinmektedir. Konvansiyonel nitrifikasyon-denitrifikasyon prosesleriyle karşılaştırıldığında Anammox prosesinde daha az oksijen kullanılmakta ve hiçbir organik madde (metanol, glikoz) içeriğine gerek duyulmamaktadır. Ancak sayılan avantajlarının yanı sıra Anammox bakterilerinin yavaş büyüme oranı (11-30 gün) dezavantajını oluşturmaktadır. Dolayısıyla bu bakterilerin zenginleştirilme safhasında özellikle kesikli reaktörler ile çalışmalar yapılmaktadır. Bu çalışmada sürekli olarak işletilen yukarı akışlı reaktörde (UASB-Upflow anaerobic sludge blanket), farklı dolgu malzemeleri kullanılarak hassas ve yavaş büyüyen Anammox bakterilerinin sistemden dışarıya atılmasının engellenmesi amaçlanmaktadır. Sistem yukarı akışlı kolon reaktörde 2 gün hidrolik bekleme süresinde (HRT-Hydraulic retention time) işletilmiştir. Çalışmada seramik taşlar ve Linpor dolgu malzemesi kullanılmıştır. Her iki dolgu malzemesi ile 45 gün işletilen reaktörlerden seramik taşların kullanıldığı reaktörde amonyum azotunun giderimin hızlı bir şekilde %90’lara ulaştığı gözlenmiştir. Linpor dolgu maddelerinin kullanıldığı reaktörde ise amonyum azotunun giderimi daha yavaş olmuştur. Nitrit azotu ise her iki reaktörde de %90’lara varan giderime ulaşmıştır. Stokiyometrik denkleme göre kıyaslandığında Linporlarda çok fazla miktarda nitrat azotunun oluştuğu görülmüştür. 25 gün sonunda Linporlu reaktörde elde edilen sonuçlarla seramik taş dolgulu reaktördeki sonuçlarla benzerlik göstermiştir. The Effect of Different Filling Materials in Anammox Bacteria Enrichment Anaerobic ammonium oxidation (Anammox) is a process that ammonium as electron donor is oxidized to nitrogen gas using nitrite as electron acceptor. Compared to conventional nitrification-denitrification processes, this process is used less oxygen and no organic material (methanol, glucose). However, the slow growth rate of Anammox bacteria (11-30 days) is disadvantages. Therefore, batch reactors have been carried out in these bacteria enrichment. In this study continuously operated upflow anaerobic sludge reactor (UASB) using different filling materials disposing of sensitive and slow-growing Anammox bacteria out of the system is purposed. System is operated up-flow column reactor at 2 days hydraulic retention time (HRT). In this study, ceramic stones and Linpor filling material are used. Both filling material reactors are operated in 45 days. Ceramic stones filling reactor is observed quickly reaches 90% were used reactor ammonium removal. The ammonium nitrogen removal was slower in Linpor filling materials reactor. Nitrite removal is reached up to 90% in both the reactor. When compared to the stoichiometric equation in Linpor was composed of large amounts of nitrate. At the end of 25 days the results were similar to ceramic stone filling reactor with Linpor filling material reactors.


1987 ◽  
Vol 22 (3) ◽  
pp. 474-490 ◽  
Author(s):  
R.L. Droste ◽  
S.R. Guiot ◽  
S.S. Gorur ◽  
K.J. Kennedy

Abstract Anaerobic treatment of dilute synthetic wastewater (300-1,000 mg chemical oxygen demand/L using laboratory upflow sludge blanket filter reactors with and without effluent recycle is described. Treatment of dilute synthetic wastewater at hydraulic retention times less than 1 and 2 h in reactors without and with recycle, respectively, resulted in biomass washout as the solids retention time decreased to less than 12 d. Reseeding would be required to operate at these critical hydraulic retention times for extended periods. Treatment of dilute synthetic wastewater at hydraulic retention times between 3-12 h resulted in soluble COD removal efficiencies between 84-95% treating 300 mg COD/L. At a 3 h hydraulic retention time, solids retention time of 80 d and stable reactor biomass concentrations of 25 g volatile suspended solids/L were maintained.


2014 ◽  
Vol 953-954 ◽  
pp. 1105-1108 ◽  
Author(s):  
Seni Karnchanawong ◽  
Kraiwet Kabtum

The objective of this study was to investigate the toxicity of Na+and K+ions on performance of upflow anaerobic sludge blanket (UASB) system. Three laboratory-scale UASB reactors, 15.8 - l working volume, were employed with 1 reactor operated as control. They were loaded at organic loading rate (OLR) of 5 kg COD/(m3-d), treating synthetic wastewater with COD concentration ~ 5000 mg/l. Na+and K+ions were added in the range of 1010 - 7180 and 41 - 7320 mg/l, respectively. No toxicity was observed at influent Na+and K+concentrations up to 3340 and 2750 mg/l, respectively. Slight inhibitions on COD removal were founded at Na+and K+concentrations of 4610 and 3920 mg/l, respectively, but moderate effect on biogas production had occurred. When Na+and K+concentrations were increased to 7180 and 7320 mg/l, respectively, strong inhibitions were observed with COD removal dropped to 45.5 and 48.8 %, respectively. Ratios of biogas productions, as compared to the control reactor, were dropped to 0.31 and 0.32, respectively. Increasing cation concentrations had more detrimental effect on biogas production than COD removal.


2019 ◽  
Vol 8 (3) ◽  
pp. 1826-1829

In the process of treating wastewaters from different industries by using anaerobic reactor, initially the start-up process is the first step to stabilize the reactor. The aim of this research is to conduct the start-up process and to evaluate the characterization of synthetic organic wastewater using Hybrid up flow Anaerobic Sludge Blanket reactor (HUASBR) with the effective volume of 20L. Initially the reactor was processed with synthetic organic wastewater with COD of 3200 mg/l. The processes were continuously operated with hydraulic retention time of 24 hours for 48 days. The results obtained after the process of stabilization were, COD removal is 87.8%, VFA was Stable for the operating condition, Biogas production was increased as 13.2 l/d during the maximum removal of COD and the pH value of outlet is ranging from 5.5-7.9.


2011 ◽  
Vol 393-395 ◽  
pp. 1153-1156
Author(s):  
Zong Lian She ◽  
Lei Lei Li ◽  
Ying Jie Zhu ◽  
Tian Xie ◽  
Li Na Jiang ◽  
...  

The effects on degrading 3-nitrophenol (3-NP) with sodium acetate as co-substrate under the conditions of laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was investigated at an operating temperature of 35±1°C in this study. The results showed that the optimum influent 3-NP concentration was 71.6mg/L when keeping influent COD concentration for 2500 mg/L and hydraulic retention time (HRT) for 30 h. At the stage of reducing influent COD concentration, all of the 3-NP removal rates were more than 95%; while the conversion rate of 3-aminophenol (3-AP) decreased from 61.4% to 0.2%. Meanwhile, the reduction of HRT also had significantly effects on the treatment effect of 3-NP. With the decreases of HRT, COD removal dropped to 49.7% from 82.7%.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 237-244 ◽  
Author(s):  
Herbert H.P. Fang ◽  
Gong-Ming Zhou

The effects of hydraulic retention time (HRT) and phenol concentration on the degradation of phenol and p-cresol in wastewater were investigated in two respective UASB (upflow anaerobic sludge blanket) reactors with effluent recirculation at 37 °C for over 440 days. After acclimation, nearly all the phenol and p-cresol at moderate concentrations could be degraded without carbohydrate as a co-substrate. Treating a wastewater containing 800 mg/l of phenol and 300 mg/l of p-cresol at HRT ranging 2–12 hours, the first reactor consistently removed 95% of phenol, 65% of p-cresol and 85% of COD at 8–12 hours of HRT; the efficiency, however, decreased at lower HRT. Treating wastewater containing a constant p-cresol concentration of 400 mg/l at 24 hours of HRT, the second reactor was able to remove 75–80% of COD when the phenol was 1200 and 1500 mg/l; the removal efficiency decreased as phenol concentration further increased. High levels of residual phenol and p-cresol in the effluent suppressed the activity of biogranules. The suppression of bioactivity was not permanent. Biomass was able to regain its activity fully after lowering the phenolic concentrations in the wastewater.


2009 ◽  
Vol 33 (4) ◽  
pp. 1139-1144 ◽  
Author(s):  
Aguinaldo Menegassi Pereira Lourenço ◽  
Cláudio Milton Montenegro Campos

The present research was carried out in the Laboratory of Water Analysis at the Engineering Department at Federal University of Lavras (LWAED-UFLA), in order to evaluate the hydrodynamic behavior of a lab-scale upflow anaerobic sludge blanket reactor (UASB) that was continuously fed with liquid effluent from swine manure with solid separation over 2mm. The hydrodynamic parameters were determined by a tracer study, under hydraulic retention time (HRT) of 12 hours, using Lithium Chloride (LiCl) as a tracer. The system was monitored periodically through physical analysis of samples collected at UASB, during the steady-state operational conditions. The physical-chemical analyses were accomplished using a flame photometry. The operational average temperature in the UASB reactor was 23.9ºC .The UASB hydrodynamic parameters determined were: average residence time (<img src="/img/revistas/cagro/v33n4/t4_barra.gif" align="absmiddle">) of 38.3 h, number of dispersion d= 0.27, and the flow type was characterized as dispersed flow of great intensity. This research is of great importance due to the fact that the scaling-up of biological reactors is based on the hydrodynamic behavior, through which the bacterial kinetic is directly influenced, as reported by Saleh (2004).


Sign in / Sign up

Export Citation Format

Share Document