scholarly journals Constructed Wetlands as Sustainable Technology for the Treatment and Reuse of the First-Flush Stormwater in Agriculture—A Case Study in Sicily (Italy)

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2542 ◽  
Author(s):  
Teresa Tuttolomondo ◽  
Giuseppe Virga ◽  
Mario Licata ◽  
Claudio Leto ◽  
Salvatore La Bella

This paper describes a case study that was carried out on a Sicilian company (Italy) dealing with separate waste collection and recycling of glass. The aims of this study were to evaluate the overall efficiency of a vertical subsurface flow system (VSSFs) constructed wetland (CW) operating for the treatment of first-flush stormwater and the effects of treated wastewater on the morphological and aesthetic characteristics of ornamental pepper and rosemary plants. The system had a total surface area of 46.80 m2 and was planted with common reed and giant reed. Wastewater samples were taken from October 2018 to July 2019 at the CW inlet and outlet for chemical-physical and microbiological characterization of the wastewater. Two separate experimental fields of rosemary and ornamental pepper were set up in another Sicilian location. Three sources of irrigation water, two accessions of rosemary and two varieties of ornamental pepper were tested in a split-plot design for a two-factor experiment. The results showed very high organic pollutant removal (BOD5 75–83%, COD 65–69%) and a good efficiency of nutrients (TN 60–66%) and trace metals (especially for Cu and Zn) removal. Escherichia coli concentration levels were always lower than 100 CFU 100 mL−1 during the test period. Irrigation water and plant habitus had significant effects on all the morphological and aesthetic characteristics of the plants. For both the crops, plants irrigated with freshwater and treated wastewater had greater growth and showed a better general appearance in comparison with plants irrigated with wastewater. The higher trace metal levels in the wastewater produced adverse effects on plant growth and reduced the visual quality of the plants. Our results suggest the suitability of a VSSFs constructed wetland for the treatment of first-flush stormwater and the reuse of treated wastewater for irrigation purposes, in accordance with legislation requirements concerning wastewater quality.

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1086
Author(s):  
Mario Licata ◽  
Roberto Ruggeri ◽  
Nicolò Iacuzzi ◽  
Giuseppe Virga ◽  
Davide Farruggia ◽  
...  

Dairy wastewater (DWW) contains large amounts of mineral and organic compounds, which can accumulate in soil and water causing serious environmental pollution. A constructed wetland (CW) is a sustainable technology for the treatment of DWW in small-medium sized farms. This paper reports a two-year study on the performance of a pilot-scale horizontal subsurface flow system for DWW treatment in Sicily (Italy). The CW system covered a total surface area of 100 m2 and treated approximately 6 m3 per day of wastewater produced by a small dairy farm, subsequent to biological treatment. Removal efficiency (RE) of the system was calculated. The biomass production of two emergent macrophytes was determined and the effect of plant growth on organic pollutant RE was recorded. All DWW parameters showed significant differences between inlet and outlet. For BOD5 and COD, RE values were 76.00% and 62.00%, respectively. RE for total nitrogen (50.70%) was lower than that of organic compounds. RE levels of microbiological parameters were found to be higher than 80.00%. Giant reed produced greater biomass than umbrella sedge. A seasonal variation in RE of organic pollutants was recorded due to plant growth rate Our findings highlight the efficient use of a CW system for DWW treatment in dairy-cattle farms.


Author(s):  
Swapnil Hiwrale

The idea of the project is predicated on the methodology of preventing the wastewater and the way to form the water pure by using various techniques to form water purification. Nowadays the matter of water shortage increases especially we face the water problem in summer seasons only. we are designing and portable hybrid water solution for the treatment of wastewater during this study, pilot-scale hybrid constructed wetlands (CWs) and multistage horizontal subsurface flow CWs (HF CWs) are studied and compared for the treatment of raw urban wastewater. Additionally, the sand became clogged, while the mulch failed to. The effect of water height on the average pollutant removal wasn't determined but HF10 performed better regarding compliance with legal regulations. With this idea of the project, we could see how we will purify the wastewater and the way much we can see the index of the water purification. A survey of the magnitude of water-related stress at villages on the subject of a college campus or Maharashtra villages affects rural life. Especially in the summer seasons. Problems of availability, accessibility, and quality of Water In Maharashtra 17 districts are that which is laid low with water crises. Maharashtra had approved over R.s 7000 corer to complete the potable project in the scarcity hit area. In India 4% of water resources available from 18% water available in word. Wetland technology can provide cheap and effective wastewater treatment in both temperature and tropical climates and is suitable for adoption in both industrialized likewise as in developing nations this method is utilized for the removal of a range of pollutants and a broad verity of wastewater worldwide. it's one of the simplest methods to treated wastewater at source premises, effectively and economically. This general term accustomed describe different degrees of treatment, so as of skyrocketing treatment levels are preliminary, primary, secondary, and tertiary or advance wastewater treatment. Disinfection to get rid of pathogens sometimes follows the last treatment steps. After treatment of wastewater from constructed wetland reactor, 90 to 95% BOD is going to be satisfied than 85 to 90% Turbidity is going to be removed, and 70 to 80% Nutrient are going to be removed by phytoremediation method. Constructed wetland technology has played a vital role in achieving the changes in wastewater.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1618
Author(s):  
Giuseppe Virga ◽  
Leo Sabatino ◽  
Mario Licata ◽  
Teresa Tuttolomondo ◽  
Claudio Leto ◽  
...  

Aromatic plants can benefit from the use of treated wastewater to satisfy their water requirements, but the effects on the essential oil yield and quality need an assessment. The aims of this study were to assess the effects of freshwater and treated wastewater obtained from a Sicilian (Italy) pilot-scale horizontal subsurface flow constructed wetland system on plant growth and yield, essential oil yield and composition of oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart) and soil characteristics. The system had a total surface area of 100 m2 and was planted with giant reed and umbrella sedge. An experimental open field of oregano was set up close to the system. Two years and two different sources of irrigation water were tested in a split-plot design for a two-factor experiment. Treated wastewater was characterized by higher values of mineral and organic constituents than freshwater. The results highlight that short-term irrigation with freshwater and treated wastewater, in both years, led to increased plant growth, dry weight and essential oil yield of oregano plants. However, it did not significantly affect the essential oil content and composition in comparison with the control. Furthermore, the year and source of irrigation water did not significantly vary the chemical composition of the soil. Our results suggest that treated wastewater can be considered an alternative to freshwater for the cultivation of oregano due to the fact that it does not greatly influence the yield quality and quantity of this species in the short-term.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 1994
Author(s):  
Mario Licata ◽  
Francesco Rossini ◽  
Giuseppe Virga ◽  
Roberto Ruggeri ◽  
Davide Farruggia ◽  
...  

On marginal lands in the Mediterranean basin, giant reed (Arundo donax L.) represents one of the most interesting perennial crops due to high levels of biomass production. Considering periodic water shortage during the summer months in this area, the reuse of treated wastewater (TWW) would seem to be a good opportunity for the growth of the species. The aim of this study was to assess the medium-term effects of irrigation using freshwater (FW) and TWW on soil characteristics and growth in giant reed plants. TWW was obtained from a pilot-scale horizontal subsurface flow constructed wetland system (HSSF CWs) with a total surface area of 100 m2. A split-plot design for a two-factor experiment was used with three replications. Medium-term TWW irrigation increased organic matter and plant nutrients in the soil; however, pH was not affected. Plants irrigated with TWW showed greater growth (+10.49% in height, +12.75% in stem diameter, +11.51% in above-ground biomass) than those irrigated with FW. The higher heating value of crop residues ranged between 16.83 (FW-irrigated plants) and 17.00 MJ kg−1 (TWW-irrigated plants). Results show that HSSF CWs produces TWW, which can be an alternative source of water for growing giant reed with high biomass performance.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Salvatore Barbagallo ◽  
Antonio Barbera ◽  
Giuseppe L. Cirelli ◽  
Mirco Milani ◽  
Attilio Toscano ◽  
...  

The competition for freshwater between agricultural, industrial, and civil uses has greatly increased in Mediterranean basin characterized by prolonged dry seasons. The aim of this study was to evaluate biomass production and the potential ethanol production of promising “no-food” herbaceous crops irrigated with low quality water at different ETc restitutions (0%, 50 and 100%). The research was carried out, in 2011 and 2012, in an open field near the full-scale constructed wetland (CW) municipal treatment plant located in the Eastern Sicily (Italy). The CW effluent has been applied in a experimental irrigation field of Vetiveria zizanoides (L.) Nash, Miscanthus x giganteus Greef et Deu. and Arundo donax (L.). Physical, chemical and microbiological analyses were carried out on wastewater samples collected at inlet and outlet of CW and pollutant removal efficiencies were calculated for each parameter. Bio-agronomical analysis on herbaceous species were made with the goal to evaluate the main parameters such as the plant dimension, the growth response and the biomass production. Biomass dry samples were processed with a three-step chemical pretreatment, hydrolysed with a mix of commercial enzymes and next fermented to obtain the yield of ethanol production. Average TSS, COD and TN removal for CW were about 74%, 67% and 68%, respectively. Although the satisfactory Escherichia coli removal, about 3.5 log unit for both beds on average, CW didn’t achieve the restrictive Italian law limits for wastewater reuse. As expected, irrigation was beneficial and the full ET replenishment increase the biomass productivity as compared to the other two treatment. The mean productivity of Vetiveria zizanoides and Myscanthus x giganteus were about 9, 26 and 38 t ha–1 and 3, 7 and 12 t ha–1 respectively in 0%, 50% and 100% ETc restitutions. Arundo donax gave higher values of dry biomass (78 t ha–1 in 100% ETc restitution in 2011 season), and potential ethanol production (about 3,744 kg ha–1). These results suggest the interest in the use of constructed wetland effluents for the irrigation of energy crops to obtain second generation ethanol, particularly in semiarid regions such as the Mediterranean area.


2009 ◽  
Vol 60 (9) ◽  
pp. 2235-2243 ◽  
Author(s):  
A. Lamei ◽  
P. van der Zaag ◽  
E. Imam

Hotels in arid coastal areas use mainly desalinated water (using reverse osmosis) for their domestic water supply, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their potable and non-potable water needs. There is normally a contractual agreement stating a minimum amount of water that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption (“contracted-for water supply”). Hotels have to carefully analyse their water requirements in order to determine which percentage of the hotel's peak water demand should be used in the contract in order to reduce water costs and avoid the risk of water shortage. This paper describes a model to optimise the contracted-for irrigation water supply with the objective function to minimise total water cost to hotels. It analyses what the contracted-for irrigation water supply of a given hotel should be, based on the size of the green irrigated area on one hand and the unit prices of the different types of water on the other hand. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh (Sharm), Egypt. This paper presents costs of wastewater treatment using waste stabilisation ponds, which is the prevailing treatment mechanism in the case study area for centralised plants, as well as aerobic/anaerobic treatment used for decentralised wastewater treatment plants in the case study area. There is only one centralised wastewater treatment plant available in the city exerting monopoly and selling treated wastewater to hotels at a much higher price than the actual cost that a hotel would bear if it treated its own wastewater. Contracting for full peak irrigation demand is the highest total cost option. Contracting for a portion of the peak irrigation demand and complementing the rest from desalination water is a cheaper option. A better option still is to complement the excess irrigation demand from the company that treats and sells wastewater, if available or from another wastewater treatment company at a higher cost (but at a cost cheaper than that of desalination water) mainly due to the high demand season and the additional cost of trucking. In some cases, however, like in Sharm, the amount of treated wastewater is limited and variable during the year and some hotels have no choice but to partially use desalination water for irrigation. A conscious strategy for water management should rely solely on treated wastewater on-site. This can be achieved by: increasing the efficiency of the irrigation system, reducing the area of high-water consuming plantation (e.g. turf grass) and/or shifting to drought resistant plants including less water-consuming or salt tolerant turf grass.


1998 ◽  
Vol 38 (1) ◽  
pp. 87-95 ◽  
Author(s):  
M. Roš ◽  
J. Vrtovšek

A combined anaerobic anoxic aerobic reactor for the treatment of the industrial wastewater that contains nitrogen and complex organic compounds as well as its design procedure is presented. The purpose of our experiments was to find a simple methodology that would provide combined reactor design. The reactor is based on the combination of anaerobic, anoxic and aerobic process in one unit only. It was found that the HRT even under 1 hour in the anaerobic zone is long enough for the efficient transformation of complex organic compounds into readily biodegradable COD which is then used in dentrification process. In the N-NO3 concentration range 1.5-50 mg/l the denitrification rate could be expressed as half-order reaction when the CODrb was in excess. N-NO3 removal efficiency is controlled by the recycle flow from the aerobic to the anoxic zone. Nitrification rate can be expressed as first, half or zero-order reaction with respect to effluent N-NH4 concentration. Nitrification rate depends on the dissolved oxygen concentration and hydrodynamic conditions in the reactor. Case study for design of a pilot plant of the combined reactor for treatment of pre-treated pharmaceutical wastewater is shown. Characteristics of pre-treated wastewater were: COD=200 mg/l, BOD5=20 mg/l, N-Kjeldahl=80 mg/l, N-NH4=70 mg/l, N-NOx<1 mg/l, P-PO4=5 mg/l. Legal requirements for treated wastewater were: COD=<100 mg/l, BOD5<5 mg/l, N-NH4=<1 mg/l, N-NOx=<10 mg/l.


2005 ◽  
Vol 51 (12) ◽  
pp. 325-329 ◽  
Author(s):  
X. Wang ◽  
X. Bai ◽  
J. Qiu ◽  
B. Wang

The performance of a pond–constructed wetland system in the treatment of municipal wastewater in Kiaochow city was studied; and comparison with oxidation ponds system was conducted. In the post-constructed wetland, the removal of COD, TN and TP is 24%, 58.5% and 24.8% respectively. The treated effluent from the constructed wetland can meet the Chinese National Agricultural and Irrigation Standard. The comparison between pond–constructed wetland system and oxidation pond system shows that total nitrogen removal in a constructed wetland is better than that in an oxidation pond and the TP removal is inferior. A possible reason is the low dissolved oxygen concentration in the wetland. Constructed wetlands can restrain the growth of algae effectively, and can produce obvious ecological and economical benefits.


Sign in / Sign up

Export Citation Format

Share Document