scholarly journals Assessment of the Impact of Small Hydropower Plants on the Ecological Status Indicators of Water Bodies: A Case Study in Lithuania

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 433
Author(s):  
Laima Česonienė ◽  
Midona Dapkienė ◽  
Petras Punys

Hydropower plants produce renewable and sustainable energy but affect the river’s physico-chemical characteristics and change the abundance and composition of the aquatic organisms. The impact of large HPPs on the ecological conditions of surface water bodies have been extensively studied, but less attention has been paid to environmental impact studies of small hydropower plants (SHPs). The impact of hydropeaking on both the river flow regime and ecosystems has been well-studied for peaking mode plants, mainly medium to large-sized ones. However, for small hydroelectric power plants, and especially for those in lowland rivers, the available information on water quality, benthic macroinvertebrates communities and fish abundance, and biomass is not sufficient. Ten small hydropower plants were selected, and the ecological status of water bodies was assessed in different parts of Lithuania. The studies were performed at the riverbed upstream from the SHPs, where the hydrological regime has not changed, and downstream from the SHPs. It was found that the small hydropower plants do not affect the physico-chemical values of the water quality indicators. This study demonstrated that the total number of benthic macroinvertebrates taxa (TS) is influenced by the concentration of nitrogen and suspended solids, the water flow, the river area, and the current speed; the number of EPT (Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies)) taxa is influenced by the concentration of nitrogen and suspended solids. The studied indicators do not have a significant impact on biomass. The SHPs affect the fish abundance and biomass. The Lithuanian fish index (LFI) is influenced by the average depth and area of the river. Some SHPs operating in lowland areas may yield somewhat significant hydrograph ramping but more detailed investigation is needed to support the significance of this impact on the biological indices.

2019 ◽  
Vol 135 ◽  
pp. 01051
Author(s):  
Valentina Kurochkina

The growing race of urbanization and population growth lead to anthropogenic load on the water is increasing all the time. High population density and considerable industrial potential of the urbanized territory are becoming dominant sources of pollution of water bodies. This trend identifies progressive pollution of water bodies and the growing need for sanitary-ecological status of water control facilities. Natural chemical composition and properties of water in surface water bodies are formed depending on the hydrological, soil, climate and other features. Flowinduced suspensions in urban watercourses is one of the main ways of contamination distribution in urbanized areas. For monitoring and reducing the negative impacts on the water quality of watercourses requires estimation of anthropogenic pressures and studying its spatio-temporal variability. Analysis of anthropogenic stress on water objects allows you to set the relationship between the number of coming in the water body of pollutants and concentrations of chemicals in the water. The main aim is to determine the amounts of contaminants accumulated in the river riverbed during the period of the economic utilization of the watercourse and to assess the impact of urbanization on its ecological status. The article deals with the influence of anthropogenous load on river hydraulics and properties of channel sediments that determine the course of channel processes and overall ecological condition of water objects. The interrelation between water body condition, water quality and sediment pollution is presented. Method of estimation of anthropogenous load pollutants in river of urban area sis proposed. Comparative analysis of the load for the rivers of Russia with various water run-off is demonstrated.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 500
Author(s):  
Laima Česonienė ◽  
Daiva Šileikienė ◽  
Midona Dapkienė

The larger and deeper lakes and ponds are, the better the conditions for spontaneous water purification, slower hydrobiological processes and slower accumulation of sediment. The goal of this research was to assess the ecological status of selected Lithuanian lentic water bodies and the impact of morphometric indicators on water quality. Multiple studies were conducted on 29 lakes and 10 ponds located throughout Lithuania in 2014–2018. The study proved that higher maxima and average depths of lakes correlate with lower Ptotal, Ntotal yield and macrophyte taxonomic composition values, indicating higher ecological status class. Higher chlorophyll a EQR, ichthyofauna taxonomic composition indicator for Lithuanian fish index LFI and Lithuanian lakes’ macroinvertebrate index indicates a higher ecological class. Larger lake areas contain smaller amounts of Ptotal and Ntotal, indicating better ecological status class; higher ichthyophane taxonomic composition in LFI, zoobenthos taxonomic composition indicator for Lithuanian lakes’ macroinvertebrates index (LLMI) and taxonomic composition of macrophytes MRI indicate better ecological status class. Larger lake areas contain lower chlorophyll a EQR values. Rapid water exchange improves the condition of the lake in addition to nitrogen, phosphorus and chlorophyll a EQR values. The faster the water exchange in the lake is, the lower the Ptotal and Ntotal values; faster water exchange in the lake also means higher chlorophyll a EQR values. However, slower water exchange indicates better ecological status of the macrophytic taxonomic composition of the MRI, the ichthyofauna taxonomic composition and the Lithuanian lakes’ macroinvertebrates index indicator of zoobenthos.


Author(s):  
I. Saakian ◽  
Aleksandr, Grigor’ev ◽  
E. Kravets ◽  
E. Rudakov ◽  
A. Faddeev ◽  
...  

Выполнен анализ действующей редакции Методики разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей , утвержденной приказом Минприроды России от 17 декабря 2007 г. 333, на предмет непротиворечивости и соответствия нормам водоохранного законодательства. Выявлена неопределенность применения Методики в условиях воздействия на качество воды природных и антропогенных факторов, не зависящих от конкретного водопользователя. Положения Методики противоречат принципам нормирования воздействия на водные объекты на основе наилучших доступных технологий, что было показано на примерах утвержденных технологических показателей содержания загрязняющих веществ в сточных водах различных отраслей промышленности. Анализ системы нормирования допустимых воздействий на водные объекты и географической дифференциации нормативов качества воды в пределах Российской Федерации вместе с системой целевых показателей качества воды также показал несоответствие Методики основным принципам водоохранного законодательства.The analysis of the current edition of the Methods of developing standards for permissible discharges of substances and microorganisms into water bodies for water users , approved by the Order of the Ministry of Natural Resources of Russia dated December 17, 2007 No. 333 for consilience and compliance with the regulations of the water protection legislation, is carried out. Uncertainty of the application of the Methods in the conditions of the impact of natural and anthropogenic factors that are independent of a specific water user on the quality of water has been identified. The provisions of the Methods contradict the principles of regulating the impact on water bodies based on the best available technologies shown on the examples of approved process indicators of the concentrations of various industrial pollutants in wastewater. An analysis of the system of regulating the permissible impact on water bodies and the geographical differentiation of water quality standards within the boundaries of the Russian Federation, together with the system of water quality targets, also showed that the Methods do not comply with the basic principles of the water protection legislation.


2019 ◽  
Vol 23 (2) ◽  
Author(s):  
Victoria Quimpang ◽  
◽  
Maricris Cudal ◽  
Einstine Opiso ◽  
Romeo Tubongbanua, Jr. ◽  
...  

freshwater fish, introduced, native, turbidity, water quality


2017 ◽  
Vol 16 (1) ◽  
pp. 75-85
Author(s):  
O. E. OMOFUNMI ◽  
J. K. . ADEWUMI ◽  
A. F. ADISA ◽  
S. O. ALEGBELEYE

Catfish production is one of the largest segments of fish culture in Lagos State, Nigeria. However, catfish effluents, which usually deteriorate the environment, need to be controlled. The effect of paddle-wheel aerator in catfish effluent was evaluated. The volume of catfish effluent was collected into two basins and diluted at given ratios. The paddle-wheel aerator was installed in one basin, while another basin served as control in determining the impact of paddle wheel aerator on catfish effluents. Water qualities such as Total Suspended Solids (TSS), Total Nitrogen (TN), Total Phosphorus (TP), Total Ammonia (TNH3) and Nitrite (NO2-N) and Biochemical oxygen demand (BOD5) examined and ana-lysed. Results indicated that paddle-wheel aerator reduced TSS (24.4±1.5 %), TN2-N (53.3±1.2 %) , TNH3-N (65.2±1.2 %) , NO2-N (97.1±1.1 %) , TP (61.8±1.1 %) and BOD5 (54 ±1.5 %). com-pared with natural purification 33.9±1.6 % of TSS, 22.7±1.4 % of TN2-N, 29.3±1.6 % of TNH3-N, 53.9±1.2 % of NO2-N, 21.6±1.5 % of TP and 15.4±1.6 % of BOD5 at the same dilution ratio There were significant different (P ≤0.05) between paddle wheel aerator and natural purification in concen-trations reduction. The paddle wheel aerator was found to be relevant in the water quality improve-ment and thus recommend for small and medium scale fish farmers in controlling effluents.


2018 ◽  
Vol 6 (2) ◽  
pp. 12
Author(s):  
Dipitseng Manamela ◽  
Omotayo Awofolu

This article investigates the impact of anthropogenic activities on an important surface water from physico-chemical, chemical and microbial perspectives. The surface water, referred to as Blesbokspruit is in the West Rand District of South Africa. Potential impactors include wastewater treatment plant, mines, farmlands and informal settlements. Water samples were collected from nine purposively selected sampling points and analysed in 2014. The mean values of analysed variables across sampling sites and periods ranged from pH: 7.4-8.4; EC: 93.0 - 146.6 mS/m; TSS: 11.3 – 39.0 mg/L; TDS: 590.3 - 1020.3 mg/L; COD: 15.6- 34.8 mg/L. Those for anions varied from NO3-: 0.2- 2.1 (mg/L) N; PO43- : 0.4-0.9 mg/L and SO42-: 118.6 - 379.5 mg/L. The metallic variables ranged from As: 0.01-0.06 mg/L; Cd: 0.02-0.06 mg/L; Fe: 0.04-0.73 mg/L; Cu: 0.02 – 0.05 mg/L and Zn: 0.05 – 0.15 mg/L. The Faecal coliform varied from 15.9-16878.5 cfu/100 ml; Total coliform: 92.9-430294 cfu/100 ml and HPC from 4322.5-39776 cfu/1ml. Detection of toxic metals and pathogenic organisms above target safety limits indicate unsuitability of the water for domestic use with impact on the health of aquatic ecosystem. The study generally revealed the impact of anthropogenic activities on the surface water quality.


2010 ◽  
Vol 7 (3) ◽  
pp. 287-301
Author(s):  
Peter De Smedt

AbstractThe Water Framework Directive (2000/60/EC) establishes a framework for integrated water management and functions as a major legal frame for the protection of water bodies in Europe. In the Flemish Region the Directive has been implemented by the Decree of 18 July 2003 on Integral Water Policy. As climate change affects the quality and quantity status of water bodies, the question arises whether the Water Framework Directive (WFD) and the Flemish implementation legislation are well-suited to handle climate change impacts. Although climate change concerns are not explicitly incorporated in the text of the WFD and the Flemish Decree, this author believes that the main components for an effective adaptation strategy are included in the above mentioned legislation. More in particular, this is achieved by the environmental objectives which have to be elaborated in environmental quality standards (EQS) on the one hand, and the integrated approach on the other hand. Water quality management on the basis of a high level of protection of the aquatic environment is indispensable for adapting to climate change, as ecosystem-based adaptation is most cost-effective. Therefore spatial planning should integrate water quality concerns, as spatial planning may be critical for spatial quality and more specific for the achievement of the environmental objectives. Consequently this contribution focuses on the impact of water quality standards on permit decision-making and spatial planning. In this context some legal instruments anchored in the Flemish legislation on integral water policy will be highlighted, especially the 'watertoets' (translated as the water checkup), which may be useful to facilitate adaptation to climate change.


2020 ◽  
Vol 12 (12) ◽  
pp. 5026 ◽  
Author(s):  
Jialu Li ◽  
Qiting Zuo

Suspended solids are an important part of lake ecosystems, and their nitrogen and phosphorus contents have a significant effect on water quality. However, information on nitrogen and phosphorus forms in suspended solids remains limited. Therefore, a case study was conducted in Lihu Lake (China), a lake with characteristically high amounts of suspended solids. Nitrogen and phosphorus speciation in suspended solids was analyzed through a sequential extraction method. We also evaluated the sources of various forms of nitrogen and phosphorus and their different effects on eutrophication. The total nitrogen (TN) content was 758.9–3098.1 mg/kg. Moreover, the proportions of various N forms in the suspended solids of the study areas were ranked as follows: Hydrolyzable nitrogen (HN) > residual nitrogen (RN) > exchangeable nitrogen (EN). Total phosphorus (TP) ranged from 294.8 to 1066.4 mg/kg, and 58.6% of this TP was inorganic phosphorus (IP). In turn, calcium (Ca)-bound inorganic phosphorus (Ca-Pi) was the main component of IP. The correlation between various nitrogen and phosphorus forms showed that there were different sources of suspended nitrogen and phosphorus throughout Lihu Lake. Correlation analysis of water quality indices and comparative analysis with surface sediments showed that in Lihu Lake, the dissolved nitrogen and phosphorus contents in water were influenced by sediment through diffusion, while particle phosphorus content in water was influenced by suspended solids through adsorption; however, due to the higher phosphorus contents in suspended solids, we should pay more attention to the impact of suspended solids.


2018 ◽  
Vol 22 (2) ◽  
pp. 175-182
Author(s):  
Anuradha Rai ◽  
Archana Niraula ◽  
Payaswini Ghimire ◽  
Aastha Pandey ◽  
Anu Gurung ◽  
...  

The study was conducted to assess the impacts of trout farming on water quality using macro invertebrates as bio-indicators. Two trout farms were selected for the study, viz., Gandaki Trout Farm (GTF) in Kaski district and Fall & Trout Fish Farm (FTF) in Nuwakot district. Reference and impacted sites were selected in each trout farms from where macro invertebrates were collected and physico-chemical parameters were measured. Sorensen’s Index and Multiple Site Similarity Index were calculated to compare the macro-invertebrate assemblages between the impact and the reference sites. Water quality classes were also calculated using macro invertebrate-based tool, NEPBIOS/ASPT scores. Altogether 24 families of macro invertebrates were observed at GTF and 12 families at FTF. The Sorensen’s Similarity Index was greater than 0.5 between reference and impacted sites at GTF; whereas it was only 0.28 at FTF indicating comparatively low level of similarity. In addition, Multiple Site Similarity Index (0.64) at GTF also indicated high similarity between the macro invertebrate assemblages. Reference sites showed higher scores with higher diversity of macro invertebrates. Both farms had suitable water quality for trout (dissolved oxygen and temperature) and most of the physico-chemical parameters did not show significant differences except pH and turbidity at GTF probably due to small scale operation and production. Journal of Institute of Science and TechnologyVolume 22, Issue 2, January 2018, Page: 175-182


2010 ◽  
Vol 3 ◽  
pp. 79-99 ◽  
Author(s):  
Hayal Desta Yimer ◽  
Seyoum Mengistou

The wetlands located at the periphery of Jimma town, southwestern Ethiopia, have critical roles in providing a range of ecological and socio-economic benefits, yet they are subject to increasing anthropogenic disturbances, notably through agriculture, settlement, intensive grazing and brick-making. This study assessed the ecological status of these wetlands, and examined the scale of the human disturbances that local communities might impose on them. Macroinvertebrate communities, water quality parameters, and human disturbance scores were assessed. Except for electrical conductivity and water temperature, no significant difference (P < 0.05) was found in physico-chemical parameters between the sampled sites. Nitrate was the only parameter that correlated with significant influence on species richness of the sampled macroinvertebrates. A total of 10 metrics were used to generate the index of biotic integrity (IBI). This IBI was then tested based on macroinvertebrate data collected. Ways of assessing and evaluating the existing ecological status of the wetlands are discussed in the context of physico-chemical parameters, IBI based on macroinvertebrates and human disturbance scales. Key Words: Catchments land use; Water quality; Macroinvertebrate; Index of Biotic Integrity; Wetland DOI: 10.3126/jowe.v3i0.2265 Journal of Wetlands Ecology, (2009) Vol. 3, pp 77-93


Sign in / Sign up

Export Citation Format

Share Document