scholarly journals Shoreline Solutions: Guiding Efficient Data Selection for Coastal Risk Modeling and the Design of Adaptation Interventions

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 875
Author(s):  
Montserrat Acosta-Morel ◽  
Valerie Pietsch McNulty ◽  
Natainia Lummen ◽  
Steven R. Schill ◽  
Michael W. Beck

The Caribbean is affected by climate change due to an increase in the variability, frequency, and intensity of extreme weather events. When coupled with sea level rise (SLR), poor urban development design, and loss of habitats, severe flooding often impacts the coastal zone. In order to protect citizens and adapt to a changing climate, national and local governments need to investigate their coastal vulnerability and climate change risks. To assess flood and inundation risk, some of the critical data are topography, bathymetry, and socio-economic. We review the datasets available for these parameters in Jamaica (and specifically Old Harbour Bay) and assess their pros and cons in terms of resolution and costs. We then examine how their use can affect the evaluation of the number of people and the value of infrastructure flooded in a typical sea level rise/flooding assessment. We find that there can be more than a three-fold difference in the estimate of people and property flooded under 3m SLR. We present an inventory of available environmental and economic datasets for modeling storm surge/SLR impacts and ecosystem-based coastal protection benefits at varying scales. We emphasize the importance of the careful selection of the appropriately scaled data for use in models that will inform climate adaptation planning, especially when considering sea level rise, in the coastal zone. Without a proper understanding of data needs and limitations, project developers and decision-makers overvalue investments in adaptation science which do not necessarily translate into effective adaptation implementation. Applying these datasets to estimate sea level rise and storm surge in an adaptation project in Jamaica, we found that less costly and lower resolution data and models provide up to three times lower coastal risk estimates than more expensive data and models, indicating that investments in better resolution digital elevation mapping (DEM) data are needed for targeted local-level decisions. However, we also identify that, with this general rule of thumb in mind, cost-effective, national data can be used by planners in the absence of high-resolution data to support adaptation action planning, possibly saving critical climate adaptation budgets for project implementation.

Author(s):  
Joshua A. Pulcinella ◽  
Arne M. E. Winguth ◽  
Diane Jones Allen ◽  
Niveditha Dasa Gangadhar

Hurricanes and other extreme precipitation events can have devastating effects on population and infrastructure that can create problems for emergency responses and evacuation. Projected climate change and associated global warming may lead to an increase in extreme weather events that results in greater inundation from storm surges or massive precipitation. For example, record flooding during Hurricane Katrina or, more recently, during Hurricane Harvey in 2017, led to many people being cut off from aid and unable to evacuate. This study focuses on the impact of severe weather under climate change for areas of Harris County, TX that are susceptible to flooding either by storm surge or extreme rainfall and evaluates the transit demand and availability in those areas. Future risk of flooding in Harris County was assessed by GIS mapping of the 100-year and 500-year FEMA floodplains and most extreme category 5 storm tide and global sea level rise. The flood maps have been overlaid with population demographics and transit accessibility to determine vulnerable populations in need of transit during a disaster. It was calculated that 70% of densely populated census block groups are located within the floodplains, including a disproportional amount of low-income block groups. The results also show a lack of transit availability in many areas susceptible to extreme storm surge exaggerated with sea level rise. Further study of these areas to improve transit infrastructure and evacuation strategies will improve the outcomes of extreme weather events in the future.


2020 ◽  
Vol 5 (11) ◽  
pp. 92 ◽  
Author(s):  
Rick Kool ◽  
Judy Lawrence ◽  
Martin Drews ◽  
Robert Bell

Sea-level rise increasingly affects low-lying and exposed coastal communities due to climate change. These communities rely upon the delivery of stormwater and wastewater services which are often co-located underground in coastal areas. Due to sea-level rise and associated compounding climate-related hazards, managing these networks will progressively challenge local governments as climate change advances. Thus, responsible agencies must reconcile maintaining Levels of Service as the impacts of climate change worsen over the coming decades and beyond. A critical question is whether such networks can continue to be adapted/protected over time to retain Levels of Service, or whether eventual retreat may be the only viable adaptation option? If so, at what performance threshold? In this paper, we explore these questions for stormwater and wastewater, using a dynamic adaptive pathway planning (DAPP) approach designed to address thresholds and increasing risk over time. Involving key local stakeholders, we here use DAPP to identify thresholds for stormwater and wastewater services and retreat options, and for developing a comprehensive and area-specific retreat strategy comprising pathway portfolios, retreat phases, potential land use changes, and for exploring pathway conflicts and synergies. The result is a prototype for an area near Wellington, New Zealand, where a managed retreat of water infrastructure is being considered at some future juncture. Dynamic adaptive strategies for managed retreats can help to reduce future disruption from coastal flooding, signal land use changes early, inform maintenance, and allow for gradual budget adjustments by the agencies that can manage expenditure over time. We present this stepwise process in a pathway form that can be communicated spatially and visually, thereby making a retreat a more manageable, sequenced, adaptation option for water agencies, and the communities they serve.


2021 ◽  
Author(s):  
◽  
Samuel Olufson

<p>Climate change impacts are beginning to be felt across the world. Therefore, the development and understanding of adaptation options is becoming more important. Sea-level rise and its associated impacts are predicted to continue and accelerate well into the next century. As such, it is important that adaptation options which reduce risks associated with sea-level rise are developed and are well understood. Managed retreat is one such option. While research on managed retreat is increasing, there is a lack of literature that identifies what managed retreat comprises, how to plan and stage the option over time, and how to cost it as an adaptation option.  This thesis aims to address this gap in the literature by answering the following three questions: (1) what are the issues related to implementing managed retreat as an adaptation strategy in coastal areas, now, and moving into the future?; (2) what are the components of managed retreat?; and (3) what framework could be developed for costing managed retreat?  A qualitative ‘desk-top’ approach was taken to deconstruct the components of managed retreat across space and time and to develop a framework for costing the components as part of an adaptation strategy. An in-depth analysis of literature, enabled an understanding of managed retreat implementation, and also informed the development of a component typology and costing framework for the adaptation option. The typology and framework were then tested for relevance and utility for decision making through a series of semi-structured discussions with key informants working in climate change adaptation.  Using the component typology and costing framework, a new approach is presented for staging and costing managed retreat, over time and in different contexts. The typology and framework contribute knowledge and guidance for local governments and infrastructure agencies when discussing managed retreat with their communities, for identifying and staging managed retreat, and for the costing of components. It does this by presenting components in stages as overlapping and parallel pathways, providing groupings of components according to types of costs, and identifying appropriate costing methodologies that enable the implementation of managed retreat. To conclude, the thesis suggests areas for future research on managed retreat.</p>


2021 ◽  
Author(s):  
◽  
Samuel Olufson

<p>Climate change impacts are beginning to be felt across the world. Therefore, the development and understanding of adaptation options is becoming more important. Sea-level rise and its associated impacts are predicted to continue and accelerate well into the next century. As such, it is important that adaptation options which reduce risks associated with sea-level rise are developed and are well understood. Managed retreat is one such option. While research on managed retreat is increasing, there is a lack of literature that identifies what managed retreat comprises, how to plan and stage the option over time, and how to cost it as an adaptation option.  This thesis aims to address this gap in the literature by answering the following three questions: (1) what are the issues related to implementing managed retreat as an adaptation strategy in coastal areas, now, and moving into the future?; (2) what are the components of managed retreat?; and (3) what framework could be developed for costing managed retreat?  A qualitative ‘desk-top’ approach was taken to deconstruct the components of managed retreat across space and time and to develop a framework for costing the components as part of an adaptation strategy. An in-depth analysis of literature, enabled an understanding of managed retreat implementation, and also informed the development of a component typology and costing framework for the adaptation option. The typology and framework were then tested for relevance and utility for decision making through a series of semi-structured discussions with key informants working in climate change adaptation.  Using the component typology and costing framework, a new approach is presented for staging and costing managed retreat, over time and in different contexts. The typology and framework contribute knowledge and guidance for local governments and infrastructure agencies when discussing managed retreat with their communities, for identifying and staging managed retreat, and for the costing of components. It does this by presenting components in stages as overlapping and parallel pathways, providing groupings of components according to types of costs, and identifying appropriate costing methodologies that enable the implementation of managed retreat. To conclude, the thesis suggests areas for future research on managed retreat.</p>


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 13
Author(s):  
Weiwei Xie ◽  
Bo Tang ◽  
Qingmin Meng

Fast urbanization produces a large and growing population in coastal areas. However, the increasing rise in sea levels, one of the most impacts of global warming, makes coastal communities much more vulnerable to flooding than before. While most existing work focuses on understanding the large-scale impacts of sea-level rise, this paper investigates parcel-level property impacts, using a specific coastal city, Tampa, Florida, USA, as an empirical study. This research adopts a spatial-temporal analysis method to identify locations of flooded properties and their costs over a future period. A corrected sea-level rise model based on satellite altimeter data is first used to predict future global mean sea levels. Based on high-resolution LiDAR digital elevation data and property maps, properties to be flooded are identified to evaluate property damage cost. This empirical analysis provides deep understanding of potential flooding risks for individual properties with detailed spatial information, including residential, commercial, industrial, agriculture, and governmental buildings, at a fine spatial scale under three different levels of global warming. The flooded property maps not only help residents to choose location of their properties, but also enable local governments to prevent potential sea-level rising risks for better urban planning. Both spatial and temporal analyses can be easily applied by researchers or governments to other coastal cities for sea-level rise- and climate change-related urban planning and management.


2019 ◽  
Author(s):  
Brooke L. Bateman ◽  
Lotem Taylor ◽  
Chad Wilsey ◽  
Joanna Wu ◽  
Geoffrey S. LeBaron ◽  
...  

AbstractClimate change is a significant threat to biodiversity globally, compounded by threats that could hinder species’ ability to respond through range shifts. However, little research has examined how future bird ranges may coincide with multiple stressors at a broad scale. Here, we assess the risk to 544 birds in the United States from future climate change threats under a mitigation-dependent global warming scenario of 1.5°C and an unmitigated scenario of 3.0°C. Threats considered included sea level rise, lake level change, human land cover conversion, and extreme weather events. We developed a gridded index of risk based on coincident threats, species richness, and richness of vulnerable species. To assign risk to individual species and habitat groups, we overlaid future bird ranges with threats to calculate the proportion of species’ ranges affected in both the breeding and non-breeding seasons. Nearly all species will face at least one new climate-related threat in each season and scenario analyzed. Even with lower species richness, the 3.0°C scenario had higher risk for species and groups in both seasons. With unmitigated climate change, multiple coincident threats will affect over 88% of the conterminous United States, and 97% of species could be affected by two or more climate-related threats. Some habitat groups will see up to 96% species facing three or more threats. However, climate change mitigation would reduce risk to birds from climate change-related threats across over 90% of the US. Across the threats included here, extreme weather events have the most significant influence on risk and the most extensive spatial coverage. Urbanization and sea level rise will also have disproportionate impacts on species relative to the area they cover. By incorporating threats into predictions of climate change impacts, this assessment provides a comprehensive picture of how climate change will affect birds and the places they need.


Author(s):  
Van Manh Dinh ◽  
Thu Ha Tran ◽  
Manh Chien Truong

Viet Nam is considered one of countries most affected by climate change and sea-level rise. It results in many negative effects, such as flooding, saline intrusion and beach erosion occurred in the coastal zones. Quang Ninh with more than 250 km coastline, located in the northeastern part of Vietnam, is one of the vulnerable coastal provinces under the heavily affected due to the sea level rise. In order to evaluate the changes of flooded areas and tidal beaches due to the sea level rise in Quang Ninh coastal zone a 2D numerical model is set up, using the 3-grids nesting technique. The numerical model is calibrated by using the harmonic constants of 8 tidal constituents at Hon Dau tide station and validated with the observed data. On the basis of the climate change scenarios (RCP4.5, RCP8.5) in the period from 2020 to 2100, the corresponding sea level values are used in the numerical modeling to calculate the changes of flooded areas and tidal beaches due to the sea level rise. The obtained results on changing of the flooded area and tidal beach in Quang Ninh coastal zone are not only statically by changing water sea levels but also due to changing of the tidal range in this area. The calculated results point out that districts under the most affected of the sea level rise are Quang Yen, Tien Yen, Hai Ha, Mong Cai.


2020 ◽  
Author(s):  
Francesco De Biasio ◽  
Stefano Vignudelli ◽  
Giorgio Baldin

&lt;p align=&quot;justify&quot;&gt;&lt;span&gt;The European Space Agency, in the framework of the Sea Level Climate Change Initiative (SL_CCI), is developing consistent and long-term satellite-based data-sets to study climate-scale variations of sea level globally and in the coastal zone. Two altimetry data-sets were recently produced. The first product is generated over a grid of 0.25x0.25 degrees, merging and homogenizing the various satellite altimetry missions. The second product that is still experimental is along track over a grid of 0.35 km. An operational production of climate-oriented altimeter sea level products has just started in the framework of the European Copernicus Climate Change Service (C3S) and a daily-mean product is now available over a grid of 0.125x0.125 degrees covering the global ocean since 1993 to present.&lt;/span&gt;&lt;/p&gt;&lt;p align=&quot;justify&quot;&gt;&lt;span&gt;We made a comparison of the SL_CCI satellite altimetry dataset with sea level time series at selected tide gauges in the Mediterranean Sea, focusing on Venice and Trieste. There, the coast is densely covered by civil settlements and industrial areas with a strongly rooted seaside tourism, and tides and storm-related surges reach higher levels than in most of the Mediterranean Sea, causing damages and casualties as in the recent storm of November 12th, 2019: the second higher water registered in Venice since 1872. Moreover, in the Venice area the ground displacements exhibit clear negative trends which deepen the effects of the absolute sea level rise.&lt;/span&gt;&lt;/p&gt;&lt;p align=&quot;justify&quot;&gt;&lt;span&gt;Several authors have pointed out the synergy between satellite altimetry and tide gauges to corroborate evidences of ground displacements. Our contribution aims at understanding the role played by subsidence, estimated by the diffence between coastal altimetry and in situ measurements, on the local sea level rise. A partial validation of these estimates has been made against GPS-derived values, in order to distinguish the contributions of subsidence and eustatism. This work will contribute to identify problems and challenges to extend the sea level climate record to the coastal zone with quality comparable to the open ocean, and also to assess the suitability of altimeter-derived absolute sea levels as a tool to estimate subsidence from tide gauge measurement in places where permanent GPS receivers are not available.&lt;/span&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document