scholarly journals Development and Verification of the Available Number of Water Intake Days in Ungauged Local Water Source Using the SWAT Model and Flow Recession Curves

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1511
Author(s):  
Jung-Ryel Choi ◽  
Il-Moon Chung ◽  
Se-Jin Jeung ◽  
Kyung-Su Choo ◽  
Cheong-Hyeon Oh ◽  
...  

Climate change significantly affects water supply availability due to changes in the magnitude and seasonality of runoff and severe drought events. In the case of Korea, despite high water supply ratio, more populations have continued to suffer from restricted regional water supplies. Though Korea enacted the Long-Term Comprehensive Water Resources Plan, a field survey revealed that the regional government organizations limitedly utilized their drought-related data. These limitations present a need for a system that provides a more intuitive drought review, enabling a more prompt response. Thus, this study presents a rating curve for the available number of water intake days per flow, and reviews and calibrates the Soil and Water Assessment Tool (SWAT) model mediators, and found that the coefficient of determination, Nash–Sutcliffe efficiency (NSE), and percent bias (PBIAS) from 2007 to 2011 were at 0.92, 0.84, and 7.2%, respectively, which were “very good” levels. The flow recession curve was proposed after calculating the daily long-term flow and extracted the flow recession trends during days without precipitation. In addition, the SWAT model’s flow data enables the quantitative evaluations of the number of available water intake days without precipitation because of the high hit rate when comparing the available number of water intake days with the limited water supply period near the study watershed. Thus, this study can improve drought response and water resource management plans.

Author(s):  
Jéssica Assaid Martins Rodrigues ◽  
Alberto Carlos de Oliveira Andrade ◽  
Marcelo Ribeiro Viola ◽  
Danton Diego Ferreira ◽  
Carlos Rogério de Mello ◽  
...  

The Brazilian Cerrado biome (BCB) is among 25 biodiversity hotspots identified worldwide, and covers the recharge area of important aquifers and rivers in South America. The increase in deforestation has been threatening water availability in this region. In order to assist in the water-resource management of the BCB, this study models the daily streamflow in a basin of the Cerrado, using two approaches: a process-based model (Soil and Water Assessment Tool - SWAT) and the data-driven model (Artificial Neural Network - ANN). The performance of the models was evaluated by the Nash-Sutcliffe coefficient (NSE), coefficient of determination (R2) and flow-duration-curves (FDC). The results indicate that SWAT (NSE > 0.61; R2 > 0.68) and ANN (NSE > 0.91; R2 > 0.79) models are suitable tools in daily streamflow modeling of the studied basin, with the ANN model being the most accurate. Based on FDC, the ANN model was also better than the SWAT model for all frequencies evaluated. Thus, the ANN model is a promising new approach for daily streamflow modelling in this region. Moreover, the results of this study can help water-resource managers in planning and implementing appropriate water allocation and conservation measures in the Brazilian Cerrado biome.


2008 ◽  
Vol 39 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Maris Klavins ◽  
Valery Rodinov

The study of changes in river discharge is important for regional climate variability characterization and for development of an efficient water resource management system. The hydrological regime of rivers and their long-term changes in Latvia were investigated. Four major types of river hydrological regimes, which depend on climatic and physicogeographic factors, were characterized. These factors are linked to the changes observed in river discharge. Periodic oscillations of discharge, and low- and high-water flow years are common for the major rivers in Latvia. A main frequency of river discharge regime changes of about 20 and 13 years was estimated for the studied rivers. A significant impact of climate variability on the river discharge regime has been found.


2018 ◽  
Vol 49 (3) ◽  
pp. 908-923 ◽  
Author(s):  
Richarde Marques da Silva ◽  
José Carlos Dantas ◽  
Joyce de Araújo Beltrão ◽  
Celso A. G. Santos

Abstract A Soil and Water Assessment Tool (SWAT) model was used to model streamflow in a tropical humid basin in the Cerrado biome, southeastern Brazil. This study was undertaken in the Upper São Francisco River basin, because this basin requires effective management of water resources in drought and high-flow periods. The SWAT model was calibrated for the period of 1978–1998 and validated for 1999–2007. To assess the model calibration and uncertainty, four indices were used: (a) coefficient of determination (R2); (b) Nash–Sutcliffe efficiency (NS); (c) p-factor, the percentage of data bracketed by the 95% prediction uncertainty (95PPU); and (d) r-factor, the ratio of average thickness of the 95PPU band to the standard deviation of the corresponding measured variable. In this paper, average monthly streamflow from three gauges (Porto das Andorinhas, Pari and Ponte da Taquara) were used. The results indicated that the R2 values were 0.73, 0.80 and 0.76 and that the NS values were 0.68, 0.79 and 0.73, respectively, during the calibration. The validation also indicated an acceptable performance with R2 = 0.80, 0.76, 0.60 and NS = 0.61, 0.64 and 0.58, respectively. This study demonstrates that the SWAT model provides a satisfactory tool to assess basin streamflow and management in Brazil.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 594 ◽  
Author(s):  
Majid Fereidoon ◽  
Manfred Koch ◽  
Luca Brocca

Hydrological models are widely used for many purposes in water sector projects, including streamflow prediction and flood risk assessment. Among the input data used in such hydrological models, the spatial-temporal variability of rainfall datasets has a significant role on the final discharge estimation. Therefore, accurate measurements of rainfall are vital. On the other hand, ground-based measurement networks, mainly in developing countries, are either nonexistent or too sparse to capture rainfall accurately. In addition to in-situ rainfall datasets, satellite-derived rainfall products are currently available globally with high spatial and temporal resolution. An innovative approach called SM2RAIN that estimates rainfall from soil moisture data has been applied successfully to various regions. In this study, first, soil moisture content derived from the Advanced Microwave Scanning Radiometer for the Earth observing system (AMSR-E) is used as input into the SM2RAIN algorithm to estimate daily rainfall (SM2R-AMSRE) at different sites in the Karkheh river basin (KRB), southwest Iran. Second, the SWAT (Soil and Water Assessment Tool) hydrological model was applied to simulate runoff using both ground-based observed rainfall and SM2R-AMSRE rainfall as input. The results reveal that the SM2R-AMSRE rainfall data are, in most cases, in good agreement with ground-based rainfall, with correlations R ranging between 0.58 and 0.88, though there is some underestimation of the observed rainfall due to soil moisture saturation not accounted for in the SM2RAIN equation. The subsequent SWAT-simulated monthly runoff from SM2R-AMSRE rainfall data (SWAT-SM2R-AMSRE) reproduces the observations at the six gauging stations (with coefficient of determination, R² > 0.71 and NSE > 0.56), though with slightly worse performances in terms of bias (Bias) and root-mean-square error (RMSE) and, again, some systematic flow underestimation compared to the SWAT model with ground-based rainfall input. Additionally, rainfall estimates of two satellite products of the Tropical Rainfall Measuring Mission (TRMM), 3B42 and 3B42RT, are used in the calibrated SWAT- model after bias correction. The monthly runoff predictions obtained with 3B42- rainfall have 0.42 < R2 < 0.72 and−0.06 < NSE < 0.74 which are slightly better than those obtained with 3B42RT- rainfall, but not as good as the SWAT-SM2R-AMSRE. Therefore, despite the aforementioned limitations, using SM2R-AMSRE rainfall data in a hydrological model like SWAT appears to be a viable approach in basins with limited ground-based rainfall data.


2019 ◽  
Vol 11 (4) ◽  
pp. 980-991 ◽  
Author(s):  
Aidi Huo ◽  
Xiaofan Wang ◽  
Yan Liang ◽  
Cheng Jiang ◽  
Xiaolu Zheng

Abstract The likelihood of future global water shortages is increasing and further development of existing operational hydrologic models is needed to maintain sustainable development of the ecological environment and human health. In order to quantitatively describe the water balance factors and transformation relations, the objective of this article is to develop a distributed hydrologic model that is capable of simulating the surface water (SW) and groundwater (GW) in irrigation areas. The model can be used as a tool for evaluating the long-term effects of water resource management. By coupling the Soil and Water Assessment Tool (SWAT) and MODFLOW models, a comprehensive hydrological model integrating SW and GW is constructed. The hydrologic response units for the SWAT model are exchanged with cells in the MODFLOW model. Taking the Heihe River Basin as the study area, 10 years of historical data are used to conduct an extensive sensitivity analysis on model parameters. The developed model is run for a 40-year prediction period. The application of the developed coupling model shows that since the construction of the Heihe reservoir, the average GW level in the study area has declined by 6.05 m. The model can accurately simulate and predict the dynamic changes in SW and GW in the downstream irrigation area of Heihe River Basin and provide a scientific basis for water management in an irrigation district.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 576 ◽  
Author(s):  
Adrián López-Ballesteros ◽  
Javier Senent-Aparicio ◽  
Raghavan Srinivasan ◽  
Julio Pérez-Sánchez

Best management practices (BMPs) provide a feasible solution for non-point source pollution problems. High sediment and nutrient yields without retention control result in environmental deterioration of surrounding areas. In the present study, the soil and water assessment tool (SWAT) model was developed for El Beal watershed, an anthropogenic and ungauged basin located in the southeast of Spain that drains into a coastal lagoon of high environmental value. The effectiveness of five BMPs (contour planting, filter strips, reforestation, fertilizer application and check dam restoration) was quantified, both individually and in combination, to test their impact on sediment and nutrient reduction. For calibration and validation processes, actual evapotranspiration (AET) data obtained from a remote sensing dataset called Global Land Evaporation Amsterdam Model (GLEAM) were used. The SWAT model achieved good performance in the calibration period, with statistical values of 0.78 for Kling–Gupta efficiency (KGE), 0.81 for coefficient of determination (R2), 0.58 for Nash–Sutcliffe efficiency (NSE) and 3.9% for percent bias (PBIAS), as well as in the validation period (KGE = 0.67, R2 = 0.83, NS = 0.53 and PBIAS = −25.3%). The results show that check dam restoration is the most effective BMP with a reduction of 90% in sediment yield (S), 15% in total nitrogen (TN) and 22% in total phosphorus (TP) at the watershed scale, followed by reforestation (S = 27%, TN = 16% and TP = 20%). All effectiveness values improved when BMPs were assessed in combination. The outcome of this study could provide guidance for decision makers in developing possible solutions for environmental problems in a coastal lagoon.


Author(s):  
N. C. Sanjay Shekar ◽  
D. C. Vinay

Abstract The present study was conducted to examine the accuracy and applicability of the hydrological models Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center (HEC)- Hydrologic Modeling System (HMS) to simulate streamflows. Models combined with the ArcGIS interface have been used for hydrological study in the humid tropical Hemavathi catchment (5,427 square kilometer). The critical focus of the streamflow analysis was to determine the efficiency of the models when the models were calibrated and optimized using observed flows in the simulation of streamflows. Daily weather gauge stations data were used as inputs for the models from 2014–2020 period. Other data inputs required to run the models included land use/land cover (LU/LC) classes resulting from remote sensing satellite imagery, soil map and digital elevation model (DEM). For evaluating the model performance and calibration, daily stream discharge from the catchment outlet data were used. For the SWAT model calibration, available water holding capacity by soil (SOL_AWC), curve number (CN) and soil evaporation compensation factor (ESCO) are identified as the sensitive parameters. Initial abstraction (Ia) and lag time (Tlag) are the significant parameters identified for the HEC-HMS model calibration. The models were subsequently adjusted by autocalibration for 2014–2017 to minimize the variations in simulated and observed streamflow values at the catchment outlet (Akkihebbal). The hydrological models were validated for the 2018–2020 period by using the calibrated models. For evaluating the simulating daily streamflows during calibration and validation phases, performances of the models were conducted by using the Nash-Sutcliffe model efficiency (NSE) and coefficient of determination (R2). The SWAT model yielded high R2 and NSE values of 0.85 and 0.82 for daily streamflow comparisons for the catchment outlet at the validation time, suggesting that the SWAT model showed relatively good results than the HEC-HMS model. Also, under modified LU/LC and ungauged streamflow conditions, the calibrated models can be later used to simulate streamflows for future predictions. Overall, the SWAT model seems to have done well in streamflow analysis capably for hydrological studies.


2017 ◽  
Author(s):  
Aaron Havel ◽  
Ali Tasdighi ◽  
Mazdak Arabi

Abstract. This study aims to understand the long-term hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate hydrologic response of the upper Cache la Poudre watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. The effects of wildfires on land cover were accounted for in the model using the SWAT land use update module. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre and post wildfire conditions. Daily calibration and testing of the model produced very good results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 percent was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow-duration curves developed for burned sub-basins using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A strong (R2 > 0.8) and significant (p 


2020 ◽  
pp. 22-31 ◽  
Author(s):  
Nguyen Kim Loi ◽  
Vo Ngoc Quynh Tram ◽  
Nguyen Thi Tinh Au

Climate is the main factor affecting hydrology in a watershed. For purely agricultural watershed, hydrological assessment and management play a very important role in the region's agricultural development. In this study, the hydrological was simulated by the Soil and Water Assessment Tool (SWAT) model. This paper aimed to calibrate and validate the SWAT model in Dak B’la watershed in Central Highland Vietnam and assess the climate change on water discharge. The coefficient of determination (R²) and Nash-Sutcliffe index (NSI), and Percent BIAS (PBIAS) during the calibration process was 0.75, 0.72, and -1.15 respectively and validation process was 0.82, 0.83, 3.67 respectively. It proved the high reliability of the SWAT model after calibration. The two climate scenarios were selected in this investigation: scenario A is the existing climate using the data from 2001 to 2018 and scenario B is the A1B emission scenario for the future period from 2020 to 2069. Compared to the average water discharge from 2001-2018 and average water discharge from 2020 to 2069, the results indicated that climate change increases the average water discharge (0.55%), especially in 2050, the water discharge in the flood season (in November) is 584 m3/s, which higher than the largest flood in 2009 of 450 m3/s.


2013 ◽  
Vol 10 (11) ◽  
pp. 13955-13978 ◽  
Author(s):  
A. A. Shawul ◽  
T. Alamirew ◽  
M. O. Dinka

Abstract. To utilize water resources in a sustainable manner, it is necessary to understand the quantity and quality in space and time. This study was initiated to evaluate the performance and applicability of the physically based Soil and Water Assessment Tool (SWAT) model in analyzing the influence of hydrologic parameters on the streamflow variability and estimation of monthly and seasonal water yield at the outlet of Shaya mountainous watershed. The calibrated SWAT model performed well for simulation of monthly streamflow. Statistical model performance measures, coefficient of determination (r2) of 0.71, the Nash–Sutcliffe simulation efficiency (ENS) of 0.71 and percent difference (D) of 3.69, for calibration and 0.76, 0.75 and 3.30, respectively for validation, indicated good performance of the model simulation on monthly time step. Mean monthly and annual water yield simulated with the calibrated model were found to be 25.8 mm and 309.0 mm, respectively. Overall, the model demonstrated good performance in capturing the patterns and trend of the observed flow series, which confirmed the appropriateness of the model for future scenario simulation. Therefore, SWAT model can be taken as a potential tool for simulation of the hydrology of unguaged watershed in mountainous areas, which behave hydro-meteorologically similar with Shaya watershed. Future studies on Shaya watershed modeling should address the issues related to water quality and evaluate best management practices.


Sign in / Sign up

Export Citation Format

Share Document