scholarly journals Development of an Automated Tracer Testing System for UASB Laboratory-Scale Reactors

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1821
Author(s):  
Juan F. Cisneros ◽  
Manuel Raul Pelaez-Samaniego ◽  
Verónica Pinos ◽  
Ingmar Nopens ◽  
Andrés Alvarado

Residence time distribution (RTD) curves play an essential role in the hydraulic characterization of reactors. Current approaches for obtaining RTD curves in laboratory-scale reactors are time-consuming and subject to large errors. Thus, automated systems to obtain RTD curves in laboratory-scale reactors are of great interest for reducing experimental errors due to human interaction, minimizing experimentation costs, and continuously obtaining experimental data. An automated system for obtaining RTD curves in laboratory-scale reactors was designed, built, and tested in this work. During the tests conducted in a cylindrical upflow anaerobic sludge blanket (UASB) reactor, the system worked properly using the stimulus–response pulse technique with sodium chloride as a tracer. Four main factors were found to affect the representativeness of the RTD curves: flow stabilization time, test water conductivity, temperature, and surface tension. A discussion on these factors and the corresponding solutions is presented. The RTD curves of the UASB reactor are left-skewed with a typical tank reactor’s flow shape with channeling and dead zones. A transitory flow behavior was evidenced in the reactor, which indicates the influence of internal turbulent flow structures. The system proposed herein is expected to help study the hydraulics of reactors using laboratory-scale models more efficiently.

2002 ◽  
Vol 45 (10) ◽  
pp. 151-156 ◽  
Author(s):  
S. Sawayama ◽  
K. Tsukahara ◽  
T. Yagishita

The possibility of 3-chlorobenzoate removal from water using an upflow anaerobic sludge blanket (UASB) reactor without the addition of any extra dechlorinating culture under light conditions has been studied on a laboratory scale. Benzoate removal was observed in the first three months of operation under light conditions, but the 3-chlorobenzoate removal was not observed. After three months of operation under light conditions, the 3-chlorobenzoate concentration in the UASB reactor effluent gradually decreased to less than 1 mg·L−1. The 3-chlorobenzoate concentration in the effluent did not increase under dark conditions. The DOC concentration in the effluent decreased according to the removal of the 3-chlorobenzoate by the UASB granules. These results indicated that granules in the UASB reactor provided the 3-chlorobenzoate removability after 80–100 d of adaptation to the 3-chlorobenzoate, and that the UASB reactor is useful for 3-chlorobenzoate removal.


1997 ◽  
Vol 35 (8) ◽  
pp. 247-253 ◽  
Author(s):  
Herbert H. P. Fang ◽  
Ivan W. C. Lau ◽  
Denis W. C. Chung

The effects of nine common aromatic pollutants from chemical industry on the bioactivity of anaerobic granules were examined. The granules were obtained from an upflow anaerobic sludge blanket (UASB) reactor treating wastewater containing colloidal starch. The specific methanogenic activities (SMA) of granules were measured at 37°C in serum vials using 3000 mg/l of colloidal starch as substrate, plus individual pollutants at various concentrations. The toxicity was expressed by the IR50 and IC50 values, i.e. the toxicant/biomass ratio and concentration at which levels the granules exhibited only 50% of their original bioactivities. Results showed that in general the granules exhibited mild resistance to toxicity of aromatic pollutants, probably due to the granules' layered microstructure. The toxicities, which were dependent on the nature of chemical functional group, of the aromatic pollutants were in the following descending order: cresols > phenol > hydroxyphenols/phthalate > benzoate. There was only marginal difference between the toxicity of the steric isomers. For the seven phenolic pollutants, the more hydrophobic the functional group the higher the toxicity. The granules' resistance to toxicity suggested the plausibility of anaerobic treatment of wastewater from the chemical industry.


Author(s):  
E. Fernández-Palacios ◽  
Xudong Zhou ◽  
Mabel Mora ◽  
David Gabriel

In this study, the long-term performance and microbial dynamics of an Upflow Anaerobic Sludge Blanket (UASB) reactor targeting sulfate reduction in a SOx emissions treatment system were assessed using crude glycerol as organic carbon source and electron donor under constant S and C loading rates. The reactor was inoculated with granular sludge obtained from a pulp and paper industry and fed at a constant inlet sulfate concentration of 250 mg S-SO42−L−1 and a constant C/S ratio of 1.5 ± 0.3 g Cg−1 S for over 500 days. Apart from the regular analysis of chemical species, Illumina analyses of the 16S rRNA gene were used to study the dynamics of the bacterial community along with the whole operation. The reactor was sampled along the operation to monitor its diversity and the changes in targeted species to gain insight into the performance of the sulfidogenic UASB. Moreover, studies on the stratification of the sludge bed were performed by sampling at different reactor heights. Shifts in the UASB performance correlated well with the main shifts in microbial communities of interest. A progressive loss of the methanogenic capacity towards a fully sulfidogenic UASB was explained by a progressive wash-out of methanogenic Archaea, which were outcompeted by sulfate-reducing bacteria. Desulfovibrio was found as the main sulfate-reducing genus in the reactor along time. A progressive reduction in the sulfidogenic capacity of the UASB was found in the long run due to the accumulation of a slime-like substance in the UASB.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 512
Author(s):  
Jeremiah Chimhundi ◽  
Carla Hörstmann ◽  
Evans M. N. Chirwa ◽  
Hendrik G. Brink

The main objective of this study was to achieve the continuous biorecovery and bioreduction of Pb(II) using an industrially obtained consortia as a biocatalyst. An upflow anaerobic sludge blanket reactor was used in the treatment process. The bioremediation technique that was applied made use of a yeast extract as the microbial substrate and Pb(NO3)2 as the source of Pb(II). The UASB reactor exhibited removal efficiencies of between 90 and 100% for the inlet Pb concentrations from 80 to 2000 ppm and a maximum removal rate of 1948.4 mg/(L·d) was measured. XRD and XPS analyses of the precipitate revealed the presence of Pb0, PbO, PbS and PbSO4. Supporting experimental work carried out included growth measurements, pH, oxidation–reduction potentials and nitrate levels.


2016 ◽  
Vol 78 (5-6) ◽  
Author(s):  
Sunwanee Jijai ◽  
Chairat Siripatana ◽  
Sompong O-Thong ◽  
Norli Ismail

The three identical lab-scale upflow anaerobic sludge blanket (UASB) reactors were operated continuously for treating cannery seafood wastewater at seven hydraulic retention times (HRTs) of 5, 4, 3, 2, 1, 0.5 and 0.25 days. The different of granule sizes from three sources: a cassava factory (CS), a seafood factory (SS), and a palm oil mill (PS), average sizes in the range 1.5-1.7, 0.7-1.0 and 0.1-0.2 mm respectively were used as inocula for anaerobic digestion. The UASB-R1 used only granules from seafood factory (R1-SS), the UASB-R2 used mixed granules from seafood with cassava factory (R2-SS+CS) and the UASB-R3 used mixed granules from seafood factory with palm oil mill (R3-SS+PS). In this study selected mathematical models including Monod, Contois, Grau second-order and modified Stover-Kicannon kinetic models were applied to determine the substrate removal kinetics of UASB reactor. Kinetic parameters were determined through linear regression using experimental data obtained from the steady-state experiment and subsequently used to predict effluent COD. The results showed that Grau second-order and modified Stover-Kicannon kinetic models were more suitable than that of others for predicting the effluent COD, with high the correlation coefficient (R2). In addition, the UASB-R2 from mixed granules with cassava factory (SS+CS) gave the best performance and highest coefficient value.


2015 ◽  
Vol 72 (12) ◽  
pp. 2236-2242 ◽  
Author(s):  
L. I. Borges ◽  
C. M. López-Vazquez ◽  
H. García ◽  
J. B. van Lier

In this study, nitrite reduction and methanogenesis in a single-stage upflow anaerobic sludge blanket (UASB) reactor was investigated, using high-strength synthetic domestic wastewater as substrate. To assess long-term effects and evaluate the mechanisms that allow successful nitrite reduction and methanogenesis in a single-stage UASB, sludge was exposed to relatively high nitrite loading rates (315 ± 13 mgNO2−-N/(l.d)), using a chemical oxygen demand (COD) to nitrogen ratio of 18 gCOD/gNO2−-N, and an organic loading rate of 5.4 ± 0.2 gCOD/(l.d). In parallel, the effects of sludge morphology on methanogenesis inhibition were studied by performing short-term batch activity tests at different COD/NO2−-N ratios with anaerobic sludge samples. In long-term tests, denitrification was practically complete and COD removal efficiency did not change significantly after nitrite addition. Furthermore, methane production only decreased by 13%, agreeing with the reducing equivalents requirement for complete NO2− reduction to N2. Apparently, the spatial separation of denitrification and methanogenesis zones inside the UASB reactor allowed nitrite reduction and methanogenesis to occur at the same moment. Batch tests showed that granules seem to protect methanogens from nitrite inhibition, probably due to transport limitations. Combined COD and N removal via nitrite in a single-stage UASB reactor could be a feasible technology to treat high-strength domestic wastewater.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 433-440 ◽  
Author(s):  
Lalit K. Agrawal ◽  
Yasuhiro Ohashi ◽  
Etsuo Mochida ◽  
Hiroyuki Okui ◽  
Yasuko Ueki ◽  
...  

The treatability of raw sewage in a temperate climate (wintertime around 10–20°C) using an upflow anaerobic sludge blanket (UASB) reactor and the hanging sponge cubes process was evaluated. After being seeded with digested sewage sludge, a 47.1 L UASB reactor was continuously operated for more than 2 years by feeding raw sewage, which had average COD around 300 mg/L (41% soluble). During summertime at an HRT of 7 h, effluent COD approximately 70 mg/L total, 50 mg/L soluble and BOD5 20 mg/L total, 12 mg/L soluble was obtained. During wintertime also, treatment efficiency and process stability was good. With the hanging sponge cubes process using the effluent of the UASB reactor treating raw sewage, the following results were obtained. The ammonia oxidation rates of 1.9 and 3.5 g NH4-N·m−2·d−1 in a downflow hanging sponge cubes biofilter, under natural air intake only were obtained during wintertime and summertime, respectively. With post-denitrification and an external carbon source, 84% in average N (NO3+NO2) was removed with an HRT of less than 1 hour and in the temperature range of 13 to 30°C using an upflow submerged hanging sponge bed bioreactor, under anaerobic conditions. The overall system using a UASB reactor and the hanging sponge cubes process could be quite an attractive treatment alternative.


2021 ◽  
Author(s):  
Perla Gonzalez ◽  
Ana Aguilar Ruiz ◽  
Andrea Reynosa Varela ◽  
Ulises Durán Hinojosa ◽  
Marco Garzón Zuñiga ◽  
...  

Abstract This study focused on evaluating different support media for COD and nitrogen compound removal from an Upflow Anaerobic Sludge Blanket (UASB) reactor fed with swine wastewater. Maximum specific nitrification (MSNA) and denitrification (MSDA) activity tests were performed in two fixed-film systems with (1) polyurethane foam (R1) and (2) polyethylene rings (R2). The results showed that the R2 system performed more efficiently than R1, reaching organic matter removal of 77 ± 8% and nitrogen of 98 ± 4%, attributed to higher specific denitrifying activity recorded (5.3 ± 0.34 g NO3--N/g VTS ∙h). In this sense, MSDA tests indicated that the suspended biomass was responsible for at least 70% of nitrogen removal in the form of ammonium compared with 20% attributed to biomass in the form of biofilm. On the other hand, 40 ± 5% of initial nitrogen could not be quantified in the system effluents, but 10 ± 1% was attributed to loss by volatilization. According to the analyses, the previous information infers the development of simultaneous nitrification-denitrification (SND) routes. Respect to the analyses of microbial diversity and abundance in the biofilm of R2 rings, the presence of the genus Pseudomonas dominated the prokaryotic community of the system in 54.4%.


Sign in / Sign up

Export Citation Format

Share Document