scholarly journals Integrated Treatment at Laboratory Scale of a Mature Landfill Leachate via Active Filtration and Anaerobic Digestion: Preliminary Results

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2845
Author(s):  
Filippo Fazzino ◽  
Stefania Bilardi ◽  
Nicola Moraci ◽  
Paolo S. Calabrò

The management of mature landfill leachate (MLL) represents an increasingly crucial issue to tackle. In this study, the feasibility of an integrated treatment was investigated at the laboratory scale using synthetic leachate with the objective of maximizing the recovery of potentially useful compounds present in leachate (especially ammonia nitrogen). First, in order to remove heavy metals, active filtration of the MLL was carried out using zero-valent iron (ZVI) mixed with either lapillus or granular activated carbon (GAC). The average removal rates for the ZVI/lapillus and the ZVI/GAC filter were 33%, 85%, 66%, and 58% and 56%, 91%, 67%, and 75% for COD, Cu, Ni, and Zn, respectively. Then, pre-treated MLL was added during the anaerobic digestion (AD) of cellulose with the aim of providing bacteria with macro (i.e., ammonia nitrogen) and micro (e.g., residual heavy metals) nutrients. After 38 days, the best performance in terms of cumulative methane production (5.3 NL) and methane yield (0.26 NL/gVSadded on average) was recorded in the reactor fed with the lowest dosage (17.9 mL/d) of MLL pre-treated by the ZVI/lapillus filter. The main issue that emerged during AD was the possible inhibition of the process linked to an excessive presence of humic substances; however, in future experiments, this problem can be solved through an optimization of the management of the whole process. The residual digestate from AD, rich in nitrogen and humic substances, may be safely used for agriculture purposes, closing the cycle of MLL management.

2018 ◽  
Vol 7 (3.11) ◽  
pp. 109 ◽  
Author(s):  
Norhafezah Kasmuri ◽  
Nur Aliah Ahmad Tarmizi ◽  
. .

Landfill leachate contains high concentration of contaminants in the form of nitrogen, suspended solids and heavy metals, which effects the environment adversely.  Hence leachate treatment is considered vital in landfill management as the effluent needs to undergo several treatments before being discharged into natural water bodies.  Without treatment, the leachate will contaminate the surface and ground water as it can penetrate through soils and subsoils. Several methods have been applied for the treatment of landfill leachate. However, these methods have several constraints due to area required and cost incurred. This paper presents the application of electrocoagulation in removing pollutants from landfill leachate; particularly ammonia-nitrogen and heavy metals.  Three metals namely aluminium, iron and zinc were used as electrodes.  Aluminium electrode was found to be the most effective where it was capable to extract 89% of zinc and 75% of iron in 30-minute retention time.   Subsequently, 93% of zinc and 83% of iron was removed in 120 minutes.  In addition, 93% of ammonia-nitrogen was also removed.   These results led to a conclusion that the electrocoagulation had the capacity to remove heavy metals and ammonia-nitrogen present in landfill leachate.    


2006 ◽  
Vol 60 (7-8) ◽  
pp. 171-175
Author(s):  
Natasa Calic ◽  
Mirjana Ristic

Under the newly implemented waste management policy in European Union countries, sanitary landfilling constitutes the fourth and the least preferred of the alternative management options for the disposal of solid urban wastes. Landfills generate emissions over long periods, often longer than a lifetime. The longest lasting emission is leachate: leachate production and management is now recognized as one of the greatest problems associated with the environmentally sound operation of sanitary landfills. These liquid wastes can cause considerable pollution problems by contacting the surrounding soil, ground or surface waters and, are therefore considered major pollution hazards unless precautionary measures are implemented. Landfill leachate characterization is a critical factor in establishing a corresponding effective management strategy or treatment process. This paper summarizes leachate quality indicators, and investigates the temporal variation of leachate quality from municipal solid waste. The toxicity of leachates from the municipal solid waste landfill "Vinca" in Belgrade, the capital of Serbia, was characterized using toxicity characteristics leaching procedures (TCLP). The "Vinca" landfill was established in 1978 as one of several municipal landfills. Since the 1990-ies the "Vinca" landfill has been the only operating landfill servicing the Belgrade Metropolitan area, the biggest city in Serbia, with 1,576,124 inhabitants in the larger-city area, and 1,273,651 inhabitants in the inner-city area. The total average amount of solid wastes deposited in the landfill is estimated to be 1100 tons/day. The landfill site is not lined and the tributary flows through the centre of the site-in some places directly under the mass of refuse. No consideration has been given to the protection of ground waters, surface runoff or drainage. Local authorities plan to expand the landfill by 0.4 km2 to a total of 1.3 km Chemical analysis was performed on the samples and the temporal variation of several parameters was monitored including pH, COD, chlorides, sulfates, nitrates, ammonia nitrogen, hardness, and heavy metals. The COD and pH were related to the biological activity within the landfill and the results indicated differences between the samples due to waste age. The concentrations of heavy metals, sulfates, nitrates, chlorides and ammonia nitrogen in the leachate were low, indicating their initially low amount in landfilled waste or their flushing with moisture contributing to a reduction in their concentrations.


2021 ◽  
Vol 11 (11) ◽  
pp. 5009
Author(s):  
Mayk Teles de Oliveira ◽  
Ieda Maria Sapateiro Torres ◽  
Humberto Ruggeri ◽  
Paulo Scalize ◽  
Antonio Albuquerque ◽  
...  

Sanitary landfill leachate (LL) composition varies according to climate variables variation, solid waste characteristics and composition, and landfill age. Leachate treatment is essentially carried out trough biological and physicochemical processes, which have showed variability in efficiency and appear a costly solution for the management authorities. Electrocoagulation (EC) seems a suitable solution for leachate treatment taking into account the characteristics of the liquor. One of the problems of EC is the electrode passivation, which affects the longevity of the process. One solution to this problem could be the replacement of the electrode by one made of recyclable material, which would make it possible to change it frequently and at a lower cost. The objective of the present work was to evaluate the removal of heavy metals (As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se and Zn) and coliforms from a LL by EC using electrodes made from steel swarf (SfE) up to 8 h. Removal efficiencies of detected heavy metals were 51%(Cr), 59%(As), 71%(Cd), 72%(Zn), 92%(Ba), 95%(Ni) and >99%(Pb). The microbial load of coliforms in leachate was reduced from 10.76 × 104 CFU/mL (raw leachate) to less than 1 CFU/mL (after treatment with SfE) (i.e., approximately 100% reduction). The use of SfE in EC of LL is very effective in removing heavy metals and coliforms and can be used as alternative treatment solution for such effluents.


Sign in / Sign up

Export Citation Format

Share Document