scholarly journals High Concentration Organic Wastewater with High Phosphorus Treatment by Facultative MBR

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2902
Author(s):  
Bing Wang ◽  
Yunlong Liu ◽  
Siyu Zhang ◽  
Kaihang Zhang ◽  
Pedro Alvarez ◽  
...  

Phosphorus is one of the main factors causing water eutrophication, and the traditional phosphorus removal process causes phosphorus-rich sludge pollution. The facultative MBR process uses phosphate-reducing bacteria to convert phosphate into directly recyclable gaseous phosphine to solve this malpractice and make sewage become a new phosphorus resource. In order to investigate the phosphorus removal efficiency and the mechanism under facultative conditions, run the facultative MBR reactor for 30 days. The COD value, phosphate concentration, and phosphine yield were measured, and the changes of sludge metabolic pathway abundance and community composition in different periods were detected. According to the measurement, the maximum phosphorus removal efficiency is 43.11% and the maximum yield of phosphine is 320 μg/m3 (measured by the volume of sewage). Combined with thermodynamic analysis, the microbial mechanism of the reactor was proposed, and the possible transformation pathway of phosphorus was analyzed. At last, changes the phosphorus removal process from the ‘removal type’ to the ‘recycling type’.

2019 ◽  
Vol 131 ◽  
pp. 01129
Author(s):  
Xiaoying Zheng ◽  
Xiaoyao Shao ◽  
Yuan Zhang ◽  
Mengmeng Yang ◽  
Zhi Xu ◽  
...  

With the increasing use of cupric oxide nanoparticles (CuO NPs), its potential environmental toxicity has been concerned nowadays. Aerobic granular sludge (AGS) is a special collection of microorganisms. This research studied under long exposure to the concentration of 5, 10 and 20 mg/L of CuO NPs, pollutants removal efficiency of AGS, extracellular polymers (EPS) and microbial communities in aerobic/anaerobic/anoxic (A/O/A) sequencing batch reactors (SBRs). The results showed that COD removal rates was stable, and the removal efficiencies of TN decreased because of the high concentration CuO NPs. On the 45th day, the TP removal efficiency of the reactor with CuO NPs concentration of 10 mg/L and 20 mg/L decreased to 55.83% and 43.72%, respectively. The denitrifying phosphorus removal-aerobic granular sludge (DPR-AGS) had certain resistance to the short-term impact of CuO NPs, and the phosphorus removal ability decreased at the late stage of the impact test. Besides, CuO NPs decreased the stability of DPR-AGS. High-throughput sequencing showed that CuO NPs decreased microbial diversity of DPR-AGS.


2014 ◽  
Vol 69 (10) ◽  
pp. 2023-2028 ◽  
Author(s):  
C. Y. Ki ◽  
K. H. Kwon ◽  
S. W. Kim ◽  
K. S. Min ◽  
T. U. Lee ◽  
...  

In summer, wastewater treatment plant total phosphorus (TP) removal efficiency is low in South Korea. The reason is because of high temperatures or significant fluctuation of inflow characteristics caused by frequent rainfall. Hence, this study tried to raise TP removal efficiency by injecting fixed external carbon sources in real sewage. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) compete to occupy microorganisms at high temperature. Propionate is known to restrain GAOs. Thus, acetate and propionate were chosen as the external carbon source in this study to find out the suitable volume and ratio of carbon source which ensured the dominance of PAOs. An external carbon source was supplied in the anaerobic reactor of the biological phosphorus removal process at high temperature (above 25 °C). TP removal efficiency was improved by injecting an external carbon source compared to that without an external carbon source. Also, it remained relatively stable when injecting an external carbon source, despite the variation in temperature. TP removal efficiency was the highest when injecting acetate and propionate in the proportion of 2:1 (total concentration as chemical oxygen demand (COD) is 12 mg/L in influent).


2018 ◽  
Vol 78 (4) ◽  
pp. 886-895 ◽  
Author(s):  
Yang Pan ◽  
Wenquan Ruan ◽  
Yong Huang ◽  
Qianqian Chen ◽  
Hengfeng Miao ◽  
...  

Abstract The sludge-shifting sequencing batch reactor (SBR) is an enhanced biological phosphorus removal (EBPR) process for wastewater treatment. In this study, the enrichment of phosphorus accumulating organisms (PAOs) will be attempted by using different high concentration of substrates. In sludge-shifting SBR, activated sludge can be continuously shifted from the bottom of SBR to anaerobic zone/selector, which contains high concentration of substrates, through an orderly reflux between the paralleled SBRs. Denaturing gradient gel electrophoresis (DGGE) methods were used to monitor microbial diversity in sludge. Fluorescence in situ hybridization (FISH) was used to determine the microbial population profile and distribution map under different sludge shifting volumes. The synthesis of intracellular polymers in this process was also analyzed. Phosphorus removal efficiency as high as 96% ± 1.3% was achieved under a sludge shifting ratio of 30%. Synthetic efficiencies of polyhydroxybutyrate (PHB) by PAOs were improved at high sludge shifting ratios. FISH results demonstrated that the population of PAOs in the process increased under properly sludge shifting ratio and it significantly improved phosphorus removal efficiency. Sequencing results indicated that determined sequences (11 OTUs) belonged to Proteobacterium, Actinobacteria and Firmicutes, Pseudomonas kuykendallii, which played an important role in the process of P removal.


2012 ◽  
Vol 455-456 ◽  
pp. 1019-1024 ◽  
Author(s):  
Hong Xu Bao ◽  
Xi Ping Ma ◽  
Jian Wang ◽  
Kui Jing ◽  
Man Li Shen ◽  
...  

A sequencing batch reactors (SBR) was adopted to investigate the denitrifying phosphorus removal efficiency employing nitrite as electron acceptor under anaerobic/anoxic condition. The experimental results showed that high nitrogen and phosphorus removal efficiency could be obtained under the following conditions: nitrite concentration of 30~40 mg/L, COD concentration of 400 mg/L, pH 8.0±0.2 in anaerobic stage and pH 7.2±0.2 in anoxic stage, sludge retention time (SRT) of 22 days. When the reactor performed steadily, a dominant functional strain was screened from the activated sludge, which has high nitrite and phosphorus removal efficiency. Batch tests results showed that the removal degree of nitrite and phosphorus could reach 99.18% and 84.94% respectively when their concentrations were 20mg/L and 10mg/L. according to the morphology and physio-biochemical characteristics, and the results of 16S rDNA sequencing, it is determined that the strain belongs to the Genus of Sphingobacterium. The experimental results achieved in this study might offer guidance to the development of shortcut denitrifying phosphorus removal process.


2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


2017 ◽  
Vol 76 (4) ◽  
pp. 776-784 ◽  
Author(s):  
Mijia Zhu ◽  
Jun Yao ◽  
Zhonghai Qin ◽  
Luning Lian ◽  
Chi Zhang

Wastewater produced from polymer flooding in oil production features high viscosity and chemical oxygen demand because of the residue of high-concentration polymer hydrolysed polyacrylamide (HPAM). In this study, steel slag, a waste from steel manufacturing, was studied as a low-cost adsorbent for HPAM in wastewater. Optimisation of HPAM adsorption by steel slag was performed with a central composite design under response surface methodology (RSM). Results showed that the maximum removal efficiency of 89.31% was obtained at an adsorbent dosage of 105.2 g/L, contact time of 95.4 min and pH of 5.6. These data were strongly correlated with the experimental values of the RSM model. Single and interactive effect analysis showed that HPAM removal efficiency increased with increasing adsorbent dosage and contact time. Efficiency increased when pH was increased from 2.6 to 5.6 and subsequently decreased from 5.6 to 9.3. It was observed that removal efficiency significantly increased (from 0% to 86.1%) at the initial stage (from 0 min to 60 min) and increased gradually after 60 min with an adsorbent dosage of 105.2 g/L, pH of 5.6. The adsorption kinetics was well correlated with the pseudo-second-order equation. Removal of HPAM from the studied water samples indicated that steel slag can be utilised for the pre-treatment of polymer-flooding wastewater.


Sign in / Sign up

Export Citation Format

Share Document