scholarly journals Vortex Dynamics Analysis of Internal Flow Field of Mixed-Flow Pump under Alford Effect

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3575
Author(s):  
Shuo Li ◽  
Wei Li ◽  
Leilei Ji ◽  
Weidong Shi ◽  
Ramesh K. Agarwal

A multi-region dynamic slip method was established to study the internal flow characteristics of the mixed-flow pump under the Alford effect. The ANSYS Fluent software and the standard k-ε two-equation model were used to numerically predict the mixed-flow pump’s external characteristics and analyze the forces on the impeller and guide vane internal vortex structure and non-uniform tip gap of the mixed-flow pump at different eccentric distances. The research results show that the external characteristic results of the numerical calculation are consistent with the experimental measurement. The head error of the design flow operating point is about 5%, and the efficiency error is no more than 3%, indicating the high accuracy of numerical calculation. Eccentricity has a significant influence on the flow field in the tip area of the mixed-flow pump impeller, the distribution of vortex core in the impeller presents obvious asymmetry, the strength and distribution area of the vortex core in the small gap area of the tip increase obviously, which aggravates the flow instability and increases the energy loss. With the increase of eccentricity, the strength and number of vortex core structures in the guide vane also increase significantly, and obvious flow separation occurs near the inlet of the guide vane suction surface on the eccentric side of the impeller. The circumferential distribution of L1 and L2 values represents the friction pressure gap in the eccentric state, and the eccentricity has a more noticeable effect on L1 and L2 values at the small gap; With the increase of eccentricity, the values of vorticity moment components L1 and L2 increase, and the Alford moment on the impeller increases. The leading-edge region of the blade is the main part affected by the unstable torque of the flow field. With the increase of eccentricity, the impact degree of tip leakage flow deepens, and the change of the tip surface pressure is the most obvious. The impact area of tip leakage flow is mainly concentrated in the first half of the impeller channel, which has an impact on the blade inlet flow field but has little impact on the blade outlet flow field.

Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi ◽  
Fei Tian ◽  
Shuo Li ◽  
...  

In order to study the effect of different numbers of impeller blades on the performance of mixed-flow pump “saddle zone”, the external characteristic test and numerical simulation of mixed-flow pumps with three different impeller blade numbers were carried out. Based on high-precision numerical prediction, the internal flow field and tip leakage flow field of mixed flow pump under design conditions and stall conditions are investigated. By studying the vorticity transport in the stall flow field, the specific location of the high loss area inside the mixed flow pump impeller with different numbers of blades is located. The research results show that the increase in the number of impeller blades improve the pump head and efficiency under design conditions. Compared to the 4-blade impeller, the head and efficiency of the 5-blade impeller are increased by 5.4% and 21.9% respectively. However, the increase in the number of blades also leads to the widening of the “saddle area” of the mixed-flow pump, which leads to the early occurrence of stall and increases the instability of the mixed-flow pump. As the mixed-flow pump enters the stall condition, the inlet of the mixed-flow pump has a spiral swirl structure near the end wall for different blade numbers, but the depth and range of the swirling flow are different due to the change in the number of blades. At the same time, the change in the number of blades also makes the flow angle at 75% span change significantly, but the flow angle at 95% span is not much different because the tip leakage flow recirculates at the leading edge. Through the analysis of the vorticity transport results in the impeller with different numbers of blades, it is found that the reasons for the increase in the values of the vorticity transport in the stall condition are mainly impacted by the swirl flow at the impeller inlet, the tip leakage flow at the leading edge and the increased unsteady flow structures.


Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi

In order to investigate the effect of impeller tip clearance on internal flow fields and the rotating stall inception impacted by tip leakage vortex and inlet unsteady flow in a mixed-flow pump, mixed-flow pump models with tip clearances of 0.5 mm, 0.8 mm, and 1.1 mm were numerically calculated, and then the energy performance curves and internal flow structures were obtained and compared. The results show that the pump efficiency and the internal flow fields of numerical calculation are in good agreement with experimental results at design flow rate and near-stall condition. A portion of the positive slope segment appears in the energy performance curves under different tip clearances. The lowest head of the mixed-flow pump in the positive slope region decreases with the increase of the tip clearance while the highest head shows an opposite situation indicating that mixed-flow pumps are easier to stall under small tip clearance. At the design flow rate condition, the tip leakage vortex is relatively stable under different tip clearances and appears as a “snail shell” shape, whereas in rotating stall conditions, the “snail shell” shape disappear and the tip leakage flow on blade front forms a “flat” vortex structure. The inlet swirl flow not only affects the tip leakage flow in rotating stall conditions under different tip clearances, but also blocks the fluid from the inlet pipe. Under the circumstance of the same tip clearance, the main frequency amplitude of pressure pulsation coefficient gradually shifts away from blade passing frequency (96.67 Hz) to the axial frequency (24.17 Hz) when the pump operates in the stall condition.


Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi ◽  
Ramesh Agarwal

This paper investigates the influence of different tip clearances on the transient characteristics of mixed-flow pump under stall condition. The instantaneous internal flow fields of mixed-flow pump with four tip clearances (0.2 mm, 0.5 mm, 0.8 mm and 1.1 mm) are explored by conducting unsteady time accurate simulations. Reynolds-averaged Navier-Stokes (RANS) equations are employed in the simulations and the results of computations are compared with experimental data. The results show that the pump head decreases by 22.1% and the pump efficiency drops by 13.9% at design flow condition when the impeller tip clearance increases from 0.2 mm to 1.1 mm. The swirling flow occurs in the inlet pipe of the mixed-flow pump with different tip clearances under stall condition, and the initial starting point of the swirling flow gets further away from the impeller inlet with increase in tip clearance because of increase in circumferential velocity and change in momentum of the tip leakage flow (TLF). The high turbulent eddy dissipation (TED) regions in the flow are attributed to the TLF, swirling flow, back flow and stall vortex, and their intensity are affected by the change in tip clearance. The oscillating trend of time domain distribution of TED enhances first and then decreases with increase in tip clearance and it exhibits a propagation feature under the effect of stall vortex, while most of the energy in the frequency domain remains concentrated in the low frequency part under stall condition.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1372
Author(s):  
Mingming Zhang ◽  
Anping Hou

In order to explore the inducing factors and mechanism of the non-synchronous vibration, the flow field structure and its formation mechanism in the non-synchronous vibration state of a high speed turbocompressor are discussed in this paper, based on the fluid–structure interaction method. The predicted frequencies fBV (4.4EO), fAR (9.6EO) in the field have a good correspondence with the experimental data, which verify the reliability and accuracy of the numerical method. The results indicate that, under a deviation in the adjustment of inlet guide vane (IGV), the disturbances of pressure in the tip diffuse upstream and downstream, and maintain the corresponding relationship with the non-synchronous vibration frequency of the blade. An instability flow that developed at the tip region of 90% span emerged due to interactions among the incoming main flow, the axial separation backflow, and the tip leakage vortices. The separation vortices in the blade passage mixed up with the tip leakage flow reverse at the trailing edge of blade tip, presenting a spiral vortex structure which flows upstream to the leading edge of the adjacent blade. The disturbances of the spiral vortexes emerge to rotate at 54.5% of the rotor speed in the same rotating direction as a modal oscillation. The blade vibration in the turbocompressor is found to be related to the unsteadiness of the tip flow. The large pressure oscillation caused by the movement of the spiral vortex is regarded as the one of the main drivers for the non-synchronous vibration for the present turbocompressor, besides the deviation in the adjustment of IGV.


2009 ◽  
Vol 2009.7 (0) ◽  
pp. 43-44
Author(s):  
Yasuhiro Inoue ◽  
Takahide Nagahara ◽  
Toshiyuki Sato ◽  
Satoshi Sugahara

Author(s):  
Akira Goto

The flow phenomena around the positive slope region of the head-flow characteristic were investigated experimentally on a mixed-flow pump impeller at various tip clearances for both shrouded and unshrouded cases. A positively-sloped head-flow characteristic (abrupt decrease in pressure head) was caused by the onset of extensive flow separation in the impeller at the casing-suction surface corner. The corner separation in unshrouded cases appeared at much lower flow rate than the shrouded case due to the favorable effect of the tip leakage flow which displaced the wake region away from the corner. The interaction between the tip leakage flows and secondary flows and the formation of the wake regions in shrouded and unshrouded cases were explained based on experimental observation and computations by the Dawes’ 3-D Navier-Stokes code. In the shrouded case, the flow rate, at which an abrupt decrease in pressure head appeared, was lowered substantially by introducing a leakage flow through a slit made between the shroud and the blade tip. Inlet recirculation was triggered by the corner separation and developed more gradually for larger tip clearances. Both the increased loss, due to the extensive flow separation, and the decreased Euler’s head, due to the abrupt change in flow pattern caused by the inlet recirculation, were responsible for the generation of positively-sloped head-flow characteristic in the unshrouded case when the tip clearance was small, while the increased loss was the primary factor in the shrouded case.


1992 ◽  
Vol 114 (2) ◽  
pp. 383-391 ◽  
Author(s):  
A. Goto

The flow phenomena around the positive slope region of the head-flow characteristic were investigated experimentally on a mixed-flow pump impeller at various tip clearances for both shrouded and unshrouded cases. A positively sloped head-flow characteristic (abrupt decrease in pressure head) was caused by the onset of extensive flow separation in the impeller at the casing-suction surface corner. The corner separation in unshrouded cases appeared at a much lower flow rate than the shrouded case due to the favorable effect of the tip leakage flow, which displaced the wake region away from the corner. The interaction between the tip leakage flows and secondary flows and the formation of the wake regions in shrouded and unshrouded cases were explained based on experimental observation and computations by the Dawes three-dimensional Navier–Stokes code. In the shrouded case, the flow rate at which an abrupt decrease in pressure head appeared was lowered substantially by introducing a leakage flow through a slit made between the shroud and the blade tip. Inlet recirculation was triggered by the corner separation and developed more gradually for larger tip clearances. Both the increased loss, due to the extensive flow separation, and the decreased Euler’s head, due to the abrupt change in flow pattern caused by the inlet recirculation, were responsible for the generation of positively sloped head-flow characteristic in the unshrouded case when the tip clearance was small, while the increased loss was the primary factor in the shrouded case.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


Author(s):  
Yo Han Jung ◽  
Young Uk Min ◽  
Jin Young Kim

This paper presents a numerical investigation of the effect of tip clearance on the suction performance and flow characteristics at different flow rates in a vertical mixed-flow pump. Numerical analyses were carried out by solving three-dimensional Reynolds-averaged Navier-Stokes equations. Steady computations were performed for three different tip clearances under noncavitating and cavitating conditions at design and off-design conditions. The pump performance test was performed for the mixed-flow pump and numerical results were validated by comparing the experimental data for a system characterized by the original tip clearance. It was shown that for large tip clearance, the head breakdown occurred earlier at the design and high flow rates. However, the head breakdown was quite delayed at low flow rate. This resulted from the cavitation structure caused by the tip leakage flow at different flow rates.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1653
Author(s):  
Nengqi Kan ◽  
Zongku Liu ◽  
Guangtai Shi ◽  
Xiaobing Liu

To reveal the effect of tip clearance on the flow behaviors and pressurization performance of a helico-axial flow pump, the standard k-ε turbulence model is employed to simulate the flow characteristics in the self-developed helico-axial flow pump. The pressure, streamlines and turbulent kinetic energy in a helico-axial flow pump are analyzed. Results show that the tip leakage flow (TLF) forms a tip-separation vortex (TSV) when it enters the tip clearance and forms a tip-leakage vortex (TLV) when it leaves the tip clearance. As the blade tip clearance increases, the TLV moves along the blade from the leading edge (LE) to trailing edge (TE). At the same time, the entrainment between the TLV and the main flow deteriorates the flow pattern in the pump and causes great hydraulic loss. In addition, the existence of tip clearance also increases the possibility of TLV cavitation and has a great effect on the pressurization performance of the helico-axial flow pump. The research results provide the theoretical basis for the structural optimization design of the helico-axial flow pump.


Sign in / Sign up

Export Citation Format

Share Document