scholarly journals Newly Developed Motor Cooling Method Using Refrigerant

2019 ◽  
Vol 10 (2) ◽  
pp. 38
Author(s):  
Hidemasa Fujita ◽  
Atsushi Itoh ◽  
Tohru Urano

One of the greatest issues for electric vehicles such as an electric vehicle (EV), a hybrid vehicle (HV), a plug-in hybrid electric vehicle (PHEV) and a fuel cell vehicle (FCV) is further improvement of effective motor cooling, since higher rated torque is achieved with higher cooling performance. In this paper, we introduce and propose a newly developed motor cooling method we tested using refrigerant, comparing with conventional water cooling. Test results show higher cooling performance of refrigerant cooling, which achieved the rated torque 60% higher than that of water cooling.

2012 ◽  
Vol 602-604 ◽  
pp. 1036-1039
Author(s):  
Hai Gang Zhang ◽  
Xiao Bin Li ◽  
Wei Guo Qian

This paper presents an improved and easy-to-use battery dynamic Hybrid-Electric Vehicle model. The fuel cell electrical subsystem and the energy management subsystem of the HEV are validated experimentally. An interesting feature of this model is the simplicity to extract the dynamic model parameters from FCV (fuel cell vehicle). Finally, the HEV model is simulated in the matlab simulation software .The results show that the model can accurately re-present the dynamic behavior of the HEV.


Author(s):  
Chanwoo Park ◽  
Arun K. Jaura

Traction batteries for hybrid and fuel cell vehicles must maintain temperatures within operational limits for longer battery lifetime and better performance. The uneven battery temperature due to improper heat transfer during discharging/charging could accumulate battery degradation on hot cells resulting in early failure of the battery pack. Current battery systems use a unidirectional coolant flow for battery thermal management. However, due to the nature of the cooling method, the unidirectional cooling systems are prone to show a largest temperature differential ΔTs between the battery cells at fixed flow boundaries, although sophisticated thermal/fluid designs are implemented to make the battery temperature uniform. Here, an innovative battery cooling method ([1]) using a reciprocating cooling flow is proposed. The reciprocating cooling system switches the coolant flow direction periodically by a valve-fan mechanism. By switching the flow direction periodically and thus the cold and hot boundaries of the battery cooling system, the battery cell temperatures are regulated with a very small fluctuation and the temperature differential ΔTs is drastically reduced. In hybrid electric vehicle and fuel cell vehicle applications, the cooling improvement using the new concept would set battery cooling system free of auxiliary air-conditioning system. Parametric study shows that using the reciprocating cooling system for a Li-Ion battery system, an optimum reciprocating period to minimize temperature differential ΔTs and maximum battery temperature Ts,max exists.


2020 ◽  
Vol 20 ◽  
pp. 85-89
Author(s):  
A. Gavrilyk ◽  
M. Lemishko

The development of electric vehicles in the near future is outlined, their general classification and problems of their use are given. The most common energy elements used to power electric traction electric motors are analyzed, their advantages and disadvantages are described. The analysis shows the most economical electric cars in 2018 and describes their traction and speed characteristics. The peculiarities of methodology for determining fuel economy for hybrid vehicles (PHEV - plugin hybrid electric vehicle) and for vehicles running on alternative fuel type (NGV-natural gas vehicle; FCV-fuel cell vehicle) are revealed and the possibility of its improvement is revealed. Methodological bases of estimation of fuel economy of electric vehicles are developed. This will allow potential buyers, owners or economists of the trucking companies to objectively estimate the equivalent fuel consumption and successfully choose one or the other brand of electric vehicle. An algorithm for determining the equivalent fuel economy of electric vehicles was developed and described taking into account the energy price policy for different countries of the world.It is concluded that lithiumion batteries have become the most widespread, as the feeding elements of electric vehicles. It is found that the equivalent fuel consumption is the most objective and informative, from the user's point of view, characterizing the use of electric vehicles compared to indicating the amount of energy (kWh) required to overcome 100 miles of travel. Using the proposed method, the equivalent fuel economy of these electric vehicles is calculated, the results are plotted against. It is established that for Ukraine, considering the cost of energy carriers, the use of electric vehicles is the most costeffective compared to other countries.


2020 ◽  
Vol 5 (2) ◽  
pp. 367-376
Author(s):  
Jia Feng ◽  
Meng Meng ◽  
Shanshan Liu ◽  
Xin Zhang ◽  
Jie Yuan ◽  
...  

AbstractThe rapid growth of fossil fuels and the aggravation of emission pollution can be improved by the green and diversified energy structure of road transport vehicles. In this article, Cui–Lawson model is first introduced to analyse the change trend of pure electric vehicle, hybrid electric vehicle, gas–fuel vehicle, fuel cell vehicle, biofuel vehicle and traditional vehicle in the next 50 years. Considering the climate, environment and economic development of each region, the future ownership of the above six models was studied by region. Moreover, the climate and topography affect the developing trend strongly. The ownership of traditional automobile is more than other kinds of vehicles until 35 and 40 years in Xibei and Dongbei regions for the cold temperature.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 747
Author(s):  
Taewook Ha ◽  
Dong Kyu Kim

The oil injection method was studied to maximize the cooling performance of an electric vehicle motor with a hairpin winding. The cooling performance of the motor using the oil cooling method is proportional to the contact area of the oil and the coil. A numerical analysis was conducted to examine the effect of the spray nozzle type on the oil flow. The dripping nozzle forms the thickest oil film on the coil, making it the most effective for cooling of hairpin-type motors. Subsequently, an experimental study was conducted to optimize the nozzle diameter and number of nozzles. When the inlet diameter and number was 6.35 mm and 6, the oil film formation rate was 53%, yielding the most uniform oil film. Next, an experiment was performed to investigate the effects of the oil temperature and flow rate on the oil flow. The oil film formation rate was the highest (83%) when the oil temperature was 40 °C and the flow rate was 6 LPM.


Author(s):  
Christian Dorsch ◽  
Xiao Wang ◽  
Ferit Küçükay

AbstractThe calibration of conventional, hybrid and electric drivetrains is an important process during the development phase of any vehicle. Therefore, to optimize the comfort and dynamic behavior (known as driveability), many test drives are performed by experienced drivers during different driving maneuvers, e.g., launch, re-launch or gear shift. However, the process can be kept more consistent and independent of human-based deviations by using objective ratings. This study first introduces an objective rating system developed for the launch behavior of conventional vehicles with automatic transmission, dual-clutch transmission, and alternative drivetrains. Then, the launch behavior, namely comfort and dynamic quality, is compared between two conventional vehicles, a plug-in hybrid electric vehicle and a battery electric vehicle. Results show the benefits of pure electric drivetrains due to the lack of launch and shifting elements, as well as the usage of a highly dynamic electric motor. While the plug-in hybrid achieves a 10% higher overall rating compared to the baseline conventional vehicle, the pure electric vehicle even achieves a 21% higher overall rating. The results also highlight the optimization potential of battery electric vehicles regarding their comfort and dynamic characteristics. The transitions and the gradient of the acceleration build-up have a major influence on the launch quality.


2013 ◽  
Vol 288 ◽  
pp. 142-147 ◽  
Author(s):  
Shang An Gao ◽  
Xi Ming Wang ◽  
Hong Wen He ◽  
Hong Qiang Guo ◽  
Heng Lu Tang

Fuel cell hybrid electric vehicle (FCHEV) is one of the most efficient technologies to solve the problems of the energy shortage and the air pollution caused by the internal-combustion engine vehicles, and its performance strongly depends on the powertrains’ matching and its energy control strategy. The theoretic matching method only based on the theoretical equation of kinetic equilibrium, which is a traditional method, could not take fully use of the advantages of FCHEV under a certain driving cycle because it doesn’t consider the target driving cycle. In order to match the powertrain that operates more efficiently under the target driving cycle, the matching method based on driving cycle is studied. The powertrain of a fuel cell hybrid electric bus (FCHEB) is matched, modeled and simulated on the AVL CRUISE. The simulation results show that the FCHEB has remarkable power performance and fuel economy.


2010 ◽  
Vol 152-153 ◽  
pp. 192-196
Author(s):  
Ju Hua Huang ◽  
Ming Cao ◽  
Hang Guo

The performance of power lithium batteries directly affects the performance of electric vehicles. To ensure the safety of power lithium batteries and improve battery life, this paper uses Ricoh R5408 Series Li-ion battery protection IC to design the high-current protection board for electric vehicle, to achieve the power lithium battery group overcharge protection, over-discharge protection, over current, short circuit protection, temperature protection and charge balance protection, and has run on the pure electric vehicles with good test results.


Sign in / Sign up

Export Citation Format

Share Document