Design and Implementation of Electric Vehicle Power Lithium Battery Protection Board

2010 ◽  
Vol 152-153 ◽  
pp. 192-196
Author(s):  
Ju Hua Huang ◽  
Ming Cao ◽  
Hang Guo

The performance of power lithium batteries directly affects the performance of electric vehicles. To ensure the safety of power lithium batteries and improve battery life, this paper uses Ricoh R5408 Series Li-ion battery protection IC to design the high-current protection board for electric vehicle, to achieve the power lithium battery group overcharge protection, over-discharge protection, over current, short circuit protection, temperature protection and charge balance protection, and has run on the pure electric vehicles with good test results.

Author(s):  
Daniele Landi ◽  
Paolo Cicconi ◽  
Michele Germani

An important issue in the mechanical industry is the reduction of the time to market, in order to meet quickly the customer needs. This goal is very important for SMEs that produce small lots of customized products. In the context of greenhouse gas emissions reduction, vehicles powered by electric motors seem to be the most suitable alternative to the traditional internal combustion engine vehicles. The market of customized electric vehicles is a niche market suitable for SMEs. Nowadays, the energy storage system of an electric vehicle powertrain consists of several Li-ion cells arranged in a container called battery pack. Particularly, the battery unit is considered as the most critical component in electric vehicle, because it impacts on performance and life cycle cost. Currently, the design of a battery pack mostly depends on the related market size. A longer design time is expected in the case of a large scale production. While a small customized production requires more agility and velocity in the design process. The proposed research focuses on a design methodology to support the designer in the evaluation of the battery thermal behavior. This work has been applied in the context of a customized small production. As test case, an urban electric light commercial vehicle has been analyzed. The designed battery layout has been evaluated and simulated using virtual prototyping tools. A cooling configuration has been analyzed and then prototyped in a physical vehicle. The virtual thermal behavior of a Li-ion battery has been validated at the test bench. The real operational conditions have been analyzed reproducing several ECE-15 driving cycles and many acceleration runs at different load values. Thermocouples have measured the temperature values during the physical experiments, in order to validate the analytical thermal profile evaluated with the proposed design approach.


Author(s):  
Jing Wang ◽  
Xingkang Huang ◽  
Junhong Chen

Solid-state lithium batteries (SSLBs) are promising candidates for replacing traditional liquid-based Li-ion batteries and revolutionizing battery systems for electric vehicles and portable devices. However, longstanding issues such as form factors,...


2020 ◽  
Vol 11 (3) ◽  
pp. 59
Author(s):  
Bin Yu ◽  
Haifeng Qiu ◽  
Liguo Weng ◽  
Kailong Huo ◽  
Shiqi Liu ◽  
...  

With the further development of the electric vehicle (EV) industry, the reliability of prediction and health management (PHM) systems has received great attention. The original Li-ion battery life prediction technology developed by offline training data can no longer meet the needs of use under complex working conditions. The existing methods pay insufficient attention to the dispersive information of health indicators (HIs) under EV driving conditions, and can only calculate through standard configuration files. To solve the problem that it is difficult to directly measure the capacity loss in real time, this paper proposes a battery HI called excitation response level (ERL) to describe the voltage variation at different lifetimes, which could be easily calculated according to the current and voltage under the actual load curve. In addition, in order to further optimize the proposed HI, Box–Cox transformation was used to enhance the linear correlation between the initially extracted HI and the capacity. Several Li-ion batteries were discharged to the 50% state of health (SOH) through profiles with different depths of discharge (DODs) and mean states of charge (SOCs) to verify the accuracy and robustness of the proposed method. The average estimation error of the tested batteries was less than 3%, which shows a good performance for accuracy and robustness.


2014 ◽  
Vol 602-605 ◽  
pp. 2836-2839 ◽  
Author(s):  
Mei Lan Zhou ◽  
Lin Wei ◽  
Jia Bin Wen

Pure electric vehicles develop rapidly all over the world. According to building the model of pure electric vehicle in the CRUISE software, first the power supply system parameters are designed and simulated, and then the power performance and feasibility of the model are verified. The design of CPS (composite power supply) which combined UC (ultra capacitor) with Li-B (lithium battery) can extend the life of the Li-B, and protect the Li-B in some way. Under the NEDC operating condition, the simulations of the SPS (single power supply) and the CPS are taken. The result shows that the variation of the Li-B SOC decrease by 8%, compared the CPS system with the SPS system, the comprehensive energy consumption economy is 6.25%.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1072
Author(s):  
Shabana Urooj ◽  
Fadwa Alrowais ◽  
Yuvaraja Teekaraman ◽  
Hariprasath Manoharan ◽  
Ramya Kuppusamy

The application of Internet of Things (IoT) has been emerging as a new platform in wireless technologies primarily in the field of designing electric vehicles. To overcome all issues in existing vehicles and for protecting the environment, electric vehicles should be introduced by integrating an intellectual device called sensor all over the body of electric vehicle with less cost. Therefore, this article confers the need and importance of introducing electric vehicles with IoT based technology which monitors the battery life of electric vehicles. Since the electric vehicles are implemented with internet, an online monitoring system which is called Things Speak has been used for monitoring all the vehicles in a continuous manner (day-by-day). These online results will then be visualized in MATLAB after an effective boosting algorithm is integrated with objective function. The efficiency of proposed method is tested by visual analysis and performance results prove that the projected method on electric vehicle is improved when using IoT based technology. It is also observed that cost of implementation is lesser and capacity of electric vehicle is increased to about 74.3% after continuous monitoring with sensors.


2012 ◽  
Vol 461 ◽  
pp. 155-159
Author(s):  
Yang Yu ◽  
Wen Dong ◽  
Ze Long ◽  
Min Hong

The accurate estimate to remaining power of the lithium battery has a very important significance to continued operation of the electric vehicle. Based on the electrochemical mechanism of lithium batteries during charge and discharge, by using the genetic algorithms to determine the weights of the SVM network, a combination algorithm is applied to estimate state-of-charge and the initial condition of network is optimized and has less error to the network. The simulation results show that the optimization network has higher precision for lithium battery SOC forecast method and can be used to estimate the lithium battery SOC value of the electric vehicle


2021 ◽  
Vol 2066 (1) ◽  
pp. 012045
Author(s):  
Weijing Yao ◽  
Cheng Zhang ◽  
Guoru Deng ◽  
Wangsong Ke ◽  
Dai Zhang ◽  
...  

Abstract Under the pressure of energy and environmental protection, we will promote the technological progress and demonstration of electric vehicles, and the construction of charging facilities will continue. Charging facilities planning and orderly charging, as two major research directions of electric vehicle infrastructure, are of great significance for the future development of electric vehicles. The optimal charging of electric vehicles can effectively improve the safe and economic operation ability of distribution network, which is of great significance to its safe operation. Therefore, this paper proposes the outsourcing test experiment and processing of urban electric vehicle public charging network based on 5G and big data. In this paper, through the analysis of the development status of urban electric vehicles, this paper proposes to optimize the charging mode of electric vehicles by combining the charging network forward and backward algorithm. In the outsourcing test experiment, the electrical safety test shows that when the current reaches 1.1-37.1kw: 5000A, when the power factor is 0.8 ∼ 0.9, when the short-circuit current impact is tolerated, the connection device will not affect the breaking operation by contact fusion welding, and the insulation protection will not be invalid. Through investigation and analysis, the satisfaction degree of electric vehicle optimization algorithm is increasing year by year. Through the analysis of the test results, the research in this paper has achieved ideal results and made a contribution to the research of urban electric vehicle public charging network.


2021 ◽  
Vol 260 ◽  
pp. 03001
Author(s):  
Lingxiao Zhao ◽  
Xiangpeng Zeng ◽  
Huansheng Ma

The development of electric vehicles has gradually become the mainstream trend of the automobile industry, and the motor controller unit is one of the key parts of the electric vehicle. The reliability and safety of the electric vehicle motor controller unit have attracted extensive attention in the industry in recent years. In order to meet the automotive industry on the motor controller unit reliability test verification. This paper studies and designs an automatic test system of the motor controller unit. And introduces the hardware and software control strategy test system in detail .The test results prove the feasibility and convenience of the test system.


2014 ◽  
Vol 986-987 ◽  
pp. 1869-1872 ◽  
Author(s):  
Jun Min Lu ◽  
Xiao Kan Wang

By comprehensive analyzing the lead-acid batteries development situation of electric vehicle at first, and making a comprehensive comparison for the performances and features of the lead-acid batteries, nickel hydrogen batteries and lithium-ion batteries, then studying the charge and discharge performance of the lithium batteries which provides technical support and references for the application and popularization of lithium-ion batteries in electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document