scholarly journals Co-Simulation and Modeling of PMSM Based on Ansys Software and Simulink for EVs

2021 ◽  
Vol 13 (1) ◽  
pp. 4
Author(s):  
Tewodros Kassa Mersha ◽  
Changqing Du

Electric vehicles (EVs) should have an electrical motor with high efficiency, high power density, and a wider constant power operating region, as well as ease of control and inexpensive manufacturing cost. To achieve these requirements, a real-time control-oriented electric motor model is essential. A co-simulation method based on Ansys software (Maxwell and Twin Builder) and MATLAB/Simulink for Permanent Magnet Synchronous Motor (PMSM) model is presented, which can improve the design of the PMSM and evaluate its performance by Rotating Machine Expert (RMxprt) when any slight modification of parameters and output inaccuracy occur. The PMSM drive system under different input reference speeds was analyzed by simulation, which testified that co-simulation of the magnetic and electrical domain is necessary to capture all applicable effects. The simulation results show the good feasibility of the motor model and control method, which achieves the desired effect and fast response with a small torque ripple as well. Such a developed prototype allows both accurate and simple characterization and optimization to be made possible.

Author(s):  
Yuliang Wen ◽  
Hanfeng Zheng ◽  
Fang Yang ◽  
Xiaofan Zeng

Abstract Permanent magnet synchronous motor (PMSM) has the advantages of high efficiency, high power density and high reliability. It has been widely used in electric vehicles, rail transit, industrial transmission and other fields. Compared with the traditional PMSM control strategy, the Indirect stator-quantities control (ISC) of low torque ripple induction motor has high dynamic response performance in the whole speed range, with high stability and strong security. However, due to the inherent characteristics of PMSM, there are still some difficulties in applying ISC strategy, such as solving the load angle corresponding to the current torque, realizing the maximum torque per ampere (MTPA) control and flux weakening control method in the stator field oriented control algorithm of PMSM. In this paper, theoretical analysis and discussion are carried out for the above difficulties, and an indirect stator vector control (ISC) method for PMSM is proposed. Finally, combined with the electric drive application platform of electric vehicle, the simulation and experimental results verify that the proposed ISC control strategy of PMSM also has good dynamic and steady-state performance in the whole speed range.


2013 ◽  
Vol 712-715 ◽  
pp. 2757-2760
Author(s):  
Jun Li Zhang ◽  
Yu Ren Li ◽  
Long Fei Fu ◽  
Fan Gao

In order to deeply understand the characteristics of the permanent magnet synchronous motor direct torque control method, its mathematical models were established in the two-phase stationary coordinate system, the two-phase synchronous rotating coordinate system, and x-y stator synchronous rotating coordinate system. The implementation process of direct torque control method in varied stator winding connection was analyzed in detail. In order to improve the speed and torque performance of the permanent magnet synchronous motor, the direct torque control block diagram and the space voltage vector selection table were given. Finally, the summary and outlook of reducing torque ripple in the permanent magnet synchronous motor direct torque control methods.


2013 ◽  
Vol 655-657 ◽  
pp. 612-619
Author(s):  
Chun Lai Zhang ◽  
Jin Nan Zhang

New quick-response and high efficiency direct torque control method of Permanent magnet synchronous motor is proposed. The new method is realized by optimizing the switching frequency of the inverter and choosing the most fit voltage space vectors. Modeling and simulating such marine electric propulsion system using Matlab/Simulink is performed. The starting-up and dynamic simulation results prove that this method can be fully used onboard the future all electric ship.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012024
Author(s):  
Rakesh Shriwastava ◽  
Satayjit Deshmukh ◽  
Ashwini Tidke ◽  
Mohan Thakre

Abstract This paper deal with comparative evaluation of control techniques of Permanent magnet synchronous motor (PMSM) drive in automotive application is investigated. The FOC, DTC and proposed SVM-DTC with LC-Snubber circuit are presented. In SVM-DTC, this reduces low torque ripple by using space vector modulated. The parameters of FOC, DTC and proposed SVM-DTC with LC-Snubber method are studied by simulation. The simulation analysis of control method is investigated in terms of speed, current and torque ripples It was observed that the proposed method upgrade the performance of PMSM drive in respect to speed, current ripples, and torque responses


2012 ◽  
Vol 433-440 ◽  
pp. 610-616
Author(s):  
Xin Guo ◽  
Hai Peng Ren

Compound active clamping three-phase Boost PFC converter with soft-switch has a good potential application because of its high power factor, high efficiency and simple structure. The mathematical model of this converter is analyzed. A variable structure control method with the robustness item is proposed for the control of this converter, in order to overcome the shortcoming of the existing method, when the converter parameters changes. The time-varying boundary layer is used to smooth the control discontinuity. Simulation is performed using PSIM and MATLAB hybrid simulation method. The results indicate that the proposed method possesses not only better transient and steady state performance under the nominal parameters, but also better robustness under the parameter perturbations, compared with the traditional PI control and the former variable structure control without the robustness item.


2014 ◽  
Vol 620 ◽  
pp. 297-305
Author(s):  
Hong Bo Zhou ◽  
Jian Bo Cao ◽  
Ze Xin Zhou ◽  
Tao Wang ◽  
Li Li Jin ◽  
...  

According to the main problems of nonlinear driving control and driving force calibration of pure electric vehicle, based on the research of permanent magnet synchronous motor control method, on the vehicle's driving force calibration techniques were studied, from the high efficiency and energy saving analysis of necessary driving force calibration, designed a new driving force calibration method, and drew the control curve of the accelerator pedal opening and the speed and the motor torque relationship between the three, and finally to pure electric self-developed to test platform for automotive related experiments. The experimental results show that, in the vehicle driving process, the driving force calibration technique compared with the previous calibration has better performance, while no obvious change of acceleration performance, the current value of the initial acceleration phase have been greatly decreased, could make the vehicle run more energy efficient, extended battery life and vehicle driving mileage.


2021 ◽  
Vol 12 (2) ◽  
pp. 61
Author(s):  
Kan Akatsu ◽  
Keita Fukuda

This paper presents some techniques for driving novel 5 phase dual winding PMSM (Permanent Magnet Synchronous Motor) for the in-wheel motor. The motor realizes winding change over characteristics that can expand driving area from high-torque mode to high-speed mode due to the dual winding construction. However, the dual winding structure makes a high-current ripple due to high coupling between windings. The paper proposes some control methods to reduce the current ripple, including inverter career ripple. The paper also presents harmonics current injection, such as the 3rd harmonics current injection method, to reduce the torque ripple and generate higher torque.


Sign in / Sign up

Export Citation Format

Share Document