scholarly journals Advanced Control Method of 5-Phase Dual Concentrated Winding PMSM for Inverter Integrated In-Wheel Motor

2021 ◽  
Vol 12 (2) ◽  
pp. 61
Author(s):  
Kan Akatsu ◽  
Keita Fukuda

This paper presents some techniques for driving novel 5 phase dual winding PMSM (Permanent Magnet Synchronous Motor) for the in-wheel motor. The motor realizes winding change over characteristics that can expand driving area from high-torque mode to high-speed mode due to the dual winding construction. However, the dual winding structure makes a high-current ripple due to high coupling between windings. The paper proposes some control methods to reduce the current ripple, including inverter career ripple. The paper also presents harmonics current injection, such as the 3rd harmonics current injection method, to reduce the torque ripple and generate higher torque.

2013 ◽  
Vol 712-715 ◽  
pp. 2757-2760
Author(s):  
Jun Li Zhang ◽  
Yu Ren Li ◽  
Long Fei Fu ◽  
Fan Gao

In order to deeply understand the characteristics of the permanent magnet synchronous motor direct torque control method, its mathematical models were established in the two-phase stationary coordinate system, the two-phase synchronous rotating coordinate system, and x-y stator synchronous rotating coordinate system. The implementation process of direct torque control method in varied stator winding connection was analyzed in detail. In order to improve the speed and torque performance of the permanent magnet synchronous motor, the direct torque control block diagram and the space voltage vector selection table were given. Finally, the summary and outlook of reducing torque ripple in the permanent magnet synchronous motor direct torque control methods.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1126
Author(s):  
Ko ◽  
Park ◽  
Lee

This paper illustrates regenerative battery charging control method of the permanent magnet synchronous motor (PMSM) drive without DC/DC converter. Conventional control methods for battery current and voltage control methods generally use a bidirectional DC/DC converter for regenerative control. The reason to use this DC/DC converter is the DC-Link current ripple of the inverter of is affected by switching of the inverter and the motor speed. This problem causes to use a low pass filter (LPF) for sensing the DC-link current, however, it occurs deteriorating the control performance. In this paper, battery current and voltage control methods using only the motor drive are illustrated. To control the DC-link current, power control is performed using the look-up table (LUT) data that are extracted from the experiment. In addition, an applicable method for the variable DC-link voltage of the proposed regenerative control method is illustrated.


2016 ◽  
Vol 65 (4) ◽  
pp. 685-701 ◽  
Author(s):  
Piotr Bogusz ◽  
Mariusz Korkosz ◽  
Jan Prokop

Abstract In the paper, the modified (compared to the classical asymmetric half-bridge) converter for a switched reluctance machine with an asymmetric rotor magnetic circuit was analysed. An analysis for two various structures of switched reluctance motors was conducted. The rotor shaping was used to obtain required start-up torque or/and to obtain less electromagnetic torque ripple. The discussed converter gives a possibility to turn a phase off much later while reduced time of a current flows in a negative slope of inductance. The results of the research in the form of waveforms of currents, voltages and electromagnetic torque were presented. Conclusions were formulated concerning the comparison of the characteristics of SRM supplied by the classic converter and by the one supplied by the analysed converter.


2013 ◽  
Vol 380-384 ◽  
pp. 309-312
Author(s):  
Xue Wen Wang ◽  
Zhou Hu Deng ◽  
Xiao Yun ◽  
Long Zhang ◽  
Yuan Zhang

The mathematical vector model of a permanent magnet synchronous motor (PMSM) has first been discussed in this paper, and a servo control system based on Space Vector Pulse Width Modulation (SVPWM) has been designed, in which a enhanced Microprogrammed Control Unit (EMCU) is combined with drive chips and the relevant control software to achieve the precise control of PMSM. In order to control the position, speed and current of the PMSM, six SVPWM signals are generated with the motor vector control method, and the vector control strategy with three closed loops is projected. According to the control principle, the circuits of the hardware modules are designed and built, and the program of the control process is compiled and downloaded the EMCU, and then the human-computer interaction interface of the system is implemented by LabVIEW. The results of the test show that the control system designed can control the rotating speed and the high-speed pendulum operation of PMSM precisely.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012024
Author(s):  
Rakesh Shriwastava ◽  
Satayjit Deshmukh ◽  
Ashwini Tidke ◽  
Mohan Thakre

Abstract This paper deal with comparative evaluation of control techniques of Permanent magnet synchronous motor (PMSM) drive in automotive application is investigated. The FOC, DTC and proposed SVM-DTC with LC-Snubber circuit are presented. In SVM-DTC, this reduces low torque ripple by using space vector modulated. The parameters of FOC, DTC and proposed SVM-DTC with LC-Snubber method are studied by simulation. The simulation analysis of control method is investigated in terms of speed, current and torque ripples It was observed that the proposed method upgrade the performance of PMSM drive in respect to speed, current ripples, and torque responses


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6733
Author(s):  
Stefan Kocan ◽  
Pavol Rafajdus ◽  
Ronald Bastovansky ◽  
Richard Lenhard ◽  
Michal Stano

Currently, one of the most used motor types for high-speed applications is the permanent-magnet synchronous motor. However, this type of machine has high costs and rare earth elements are needed for its production. For these reasons, permanent-magnet-free alternatives are being sought. An overview of high-speed electrical machines has shown that the switched reluctance motor is a possible alternative. This paper deals with design and optimization of this motor, which should achieve the same output power as the existing high-speed permanent-magnet synchronous motor while maintaining the same motor volume. The paper presents the initial design of the motor and the procedure for analyses performed using analytical and finite element methods. During the electromagnetic analysis, the influence of motor geometric parameters on parameters such as: maximum current, average torque, torque ripple, output power, and losses was analyzed. The analysis of windage losses was performed by analytical calculation. Based on the results, it was necessary to create a cylindrical rotor shape. The rotor modification method was chosen based on mechanical analysis. Using thermal analysis, the design was modified to meet thermal limits. The result of the work was a design that met all requirements and limits.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1325 ◽  
Author(s):  
Yuan Zhu ◽  
Ben Tao ◽  
Mingkang Xiao ◽  
Gang Yang ◽  
Xingfu Zhang ◽  
...  

Two problems can cause control performance degradation on permanent magnet synchronous motor (PMSM) systems, namely, fluctuation of PMSM parameters and the time delay between current sampling and command value update. In order to reduce the influence of these problems, a new current-predictive control strategy is proposed in this article for medium- and high-speed PMSM. This strategy is based on the discrete mathematical model of PMSM. This new control strategy consists of two main steps: First, an integrator is applied to calculate current compensation value; second, the predictive current value is obtained through deadbeat-current predictive method. The stability of predictive control system is also proved in the article. With this deadbeat-current predictive control scheme, the real current can reach the desired value within one control-step. Based on this new current control method, Luenberger observer and phase-locked loop position tracker is applied in this article. Experimental results for 0.4 kW surface-mounted PMSM confirm the validity and excellent performance for parameters fluctuation of new current predictive control.


2013 ◽  
Vol 275-277 ◽  
pp. 894-898
Author(s):  
Yu Jie Guo ◽  
Wen Tao Zhang

According to bent position and size on two HP-IP bent rotor,and combined with maintenance schedule,this paper puts forward two vibration control methods of low speed dynamic balance on site and high speed dynamic balance after turning.For the bent position in the turbine middle,on the basis of mode decomposition in bent rotor,the research show that balance weight according to a scale in the both ends and middle mainly of the turbine can achieve good results.


Sign in / Sign up

Export Citation Format

Share Document