scholarly journals Suppression of Cross-Coupling Effect of Hybrid Permanent Magnet Synchronous Motor with Parallel Magnetic Circuit

2021 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Xiao He ◽  
Guangqing Bao

Hybrid permanent magnet synchronous motor (HPMSM) has attracted increased attention in recent years due to its adjustable air gap flux. However, as a result of the cross-coupling effect of high- and low-coercive permanent magnets, the precise magnetic adjustment of HPMSM has become increasingly difficult. In order to weaken the cross-coupling effect, two methods of adding magnetic barrier and exciting coil are adopted in this paper. First, the equivalent magnetic circuit model is established, and the theoretical rationality of the weakening method is analyzed. Second, the electromagnetic performance of two weakening methods are analyzed based on the finite element analysis. Finally, the rationality of the theoretical analysis is verified, which provides the structure basis for the precise magnetic adjustment of the hybrid permanent magnet motor.

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3887
Author(s):  
Jeong ◽  
Lee ◽  
Hur

This paper presents a mitigation method of slot harmonic cogging torque considering unevenly magnetized magnets in a permanent magnet synchronous motor. In previous studies, it has been confirmed that non-uniformly magnetized permanent magnets cause an unexpected increase of cogging torque because of additional slot harmonic components. However, these studies did not offer a countermeasure against it. First, in this study, the relationship between the residual magnetic flux density of the permanent magnet and the cogging torque is derived from the basic form of the Maxwell stress tensor equation. Second, the principle of the slot harmonic cogging torque generation is explained qualitatively, and the mitigation method of the slot harmonic component is proposed. Finally, the proposed method is verified with the finite element analysis and experimental results.


2011 ◽  
Vol 383-390 ◽  
pp. 1825-1830
Author(s):  
Gui Hong Feng ◽  
Shuang Li ◽  
Min Zhao ◽  
Bing Yi Zhang

Squirrel-cage rotor line-start permanent magnet synchronous motor can not meet the heavy lifting, frequent starting conditions for the lifting requirements. In order to solve the difficult problem of starting caused by the squirrel-cage rotor line-start permanent magnet synchronous motor (LS-PMSM), a novel wound rotor line-start permanent magnet synchronous motor is proposed in this paper, which uses wound rotor to replace squirrel cage rotor. In this paper, the finite element analysis method is adopted to simulate and analyze the starting process of the motor, through reasonably determining the value of the external rotor resistance, the starting performance of the motor has improved greatly, and lead the motor smoothly into synchronous speed. The simulation results show the correctness and effectiveness of the research methods.


2012 ◽  
Vol 455-456 ◽  
pp. 1160-1168
Author(s):  
Shuang Hui Hao ◽  
Zi Li Tang ◽  
Rui Zheng Long ◽  
Ming Hui Hao

Design optimization and analysis of the high power linear permanent magnet synchronous motor for aircraft launch are presented in this paper. This motor has a decentralized stator that runs the entire length of travel. A plate with an array of permanent magnets is used as the secondary. This structure enables easier manufacture, flexible system assembling, and autonomous decentralized control employed for energy saving. The thrust and cogging force of the motor are highly affected by the motor structural parameters. The influences of these structural parameters on the thrust and cogging force are analyzed by finite element analysis method; experiment studies are carried out to support the theoretical analysis.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Chunyan Li ◽  
Fei Guo ◽  
Baoquan Kou ◽  
Tao Meng

A permanent magnet synchronous motor (PMSM) based on the principle of variable exciting magnetic reluctance (VMRPMSM) is presented. The motor is equipped with symmetrical non-magnetic conductors on both sides of the tangential magnetized permanent magnets (PMs). By placing the non-magnetic conductor (NMC), the magnetic reluctance in the exciting circuit is adjusted, and the flux weakening (FW) of the motor is realized. Hence, the NMC is studied comprehensively. On the basis of introducing the motor structure, the FW principle of this PMSM is described. The shape of the NMC is determined by analyzing and calculating the electromagnetic force (EF) acting on the PMs. We calculate the magnetic reluctance of the NMC and research on the effects of the NMC on electromagnetic force, d-axis and q-axis inductance and FW performance. The critical speeds from the test of the no-load back electromotive force (EMF) verify the correctness of the NMC design. The analysis is corresponding to the test result which lays the foundation of design for this kind of new PMSM.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1736
Author(s):  
In-Jun Yang ◽  
Si-Woo Song ◽  
Dong-Ho Kim ◽  
Kwang-Soo Kim ◽  
Won-Ho Kim

In an interior permanent magnet synchronous motor, an adhesive such as bond is generally injected into the magnet tolerance to prevent vibration of the permanent magnet within the insertion space. In this case, a disadvantage is that the magnet tolerance does not contribute to the performance. In this paper, ferrofluid is inserted to improve the torque density, utilizing the magnet tolerance. When inserting ferrofluid into the magnet tolerance, it is important to fix the magnet because conventional adhesives are not used, and it is important that the ferrofluid does not act as a leakage path within the insertion space. In this study, a new rotor configuration using a plastic barrier that satisfies these considerations was introduced. The analysis was conducted through finite element analysis (FEA), and this technique was verified by comparing the simulation results and the experimental results through a dynamo test. It was confirmed that the no-load back electromotive force in the final model increased through ferrofluid injection.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hongchang Ding ◽  
Xiaobin Gong ◽  
Yuchun Gong

For high-speed permanent magnet synchronous motor (PMSM), its efficiency is significantly affected by the performance of permanent magnets (PMs), and the phenomenon of demagnetization will occur with the increase of PM temperature. So, the temperature detection of PMs in rotor is very necessary for the safe operation of PMSM, and direct detection is difficult due to the rotation of rotor. Based on the relationship between permanent magnet flux linkage and its temperature, in this paper, a new temperature estimation method using model reference fuzzy adaptive control (MRFAC) is proposed to estimate PM temperature. In this method, the model reference adaptive system (MRAS) is built to estimate the permanent magnet flux linkage, and the fuzzy control method is introduced into MRAS, which is used to improve the accuracy and applicable speed range of parameters estimated by MRAS. Different permanent magnet flux linkages are estimated in MRFAC based on the variation of stator resistance, which corresponds to different working temperatures measured by thermal resistance, and the PM temperature will be obtained according to the estimated permanent magnet flux linkage. At last, the back electromotive force (BEMF) is measured on the experimental motor, and the flux linkage and PM temperature of the experimental motor are deduced according to the BEMF. Compared with the experimental results, the estimated PM temperature is very close to the actual test value, and the error is less than 5%, which verifies that the proposed method is suitable for the estimation of PM temperature.


2013 ◽  
Vol 64 (5) ◽  
pp. 298-304 ◽  
Author(s):  
Baghdad Belabbes ◽  
Abdelkader Lousdad ◽  
Abdelkader Meroufel ◽  
Ahmed Larbaoui

Abstract The aim of the present paper is the study of the behaviour of passivity based control and difficulties due to synthesis for various operating conditions of a synchronous motor with a permanent magnets. The study takes into account the guarantee of satisfactory static and dynamic performance. It also allows the system to be insensitive to disturbances and uncertainties on the parameters. A number of estimation techniques have been developed to achieve speed and position sensorless permanent magnet synchronous motor (PMSM) drives. Most of them suffer from variation of motor parameters such as the stator resistance, stator inductance and torque constant. Also it is known that conventional linear estimators are not adaptive variations of the operating point in a nonlinear system.


Sign in / Sign up

Export Citation Format

Share Document