scholarly journals Controls on ecosystem nitrogen (N) status and carbon (C) balance in red spruce forests located in a region of historically high atmospheric N deposition.

2016 ◽  
Author(s):  
Kenneth R. Smith
2016 ◽  
Vol 408 (1-2) ◽  
pp. 343-356 ◽  
Author(s):  
Kenneth R. Smith ◽  
Justin M. Mathias ◽  
Brenden E. McNeil ◽  
William T. Peterjohn ◽  
Richard B. Thomas

2011 ◽  
Vol 51 (No. 9) ◽  
pp. 416-422 ◽  
Author(s):  
S.P. Sah

This study aims to investigate the changes in isotope ratios in foliage and soils of the two spruce forests [Picea abies (L.) Karst.] differing greatly in their atmospheric N deposition and climatic conditions. As expected, both N concentrations and <sup>15</sup>N values in both needles and litter were found to be significantly higher in the Solling stand (N-saturated) compared to the Hyytial&auml; stand (N-poor). For the N-limited site (Hyytial&auml; plot), a typical vertical gradient of the soil <sup>15</sup>N-enrichment (both in organic and mineral soil) was observed. The N-saturated site (Solling) differs from the N-limited site (Hyytial&auml;) with respect to the <sup>15</sup>N abundance trend in organic layer. In the upper organic layer up to O-f horizon, i.e. mor layer (0&ndash;3.5 cm depth) of Solling plot, there is almost a trend of slight soil <sup>15</sup>N-depletion with increasing depth, and then there is a <sup>15</sup>N-enrichment from O-h horizon (humus layer) of organic layer to mineral soil horizons. This is explained by the presence of prominent NO<sub>3</sub><sup>&ndash;</sup> leaching at this plot


1989 ◽  
Vol 19 (8) ◽  
pp. 1037-1043 ◽  
Author(s):  
D. H. DeHayes ◽  
M. A. Ingle ◽  
C. E. Waite

Red spruce (Picearubens Sarg.) seedlings were treated with one of four concentrations of NH4NO3 (0, 300, 1500, and 3000 kg N•ha−1•year−1) applied to the soil, with and without triple superphosphate, during early, mid-, or late summer. Laboratory freezing assessments indicated that cold tolerance of treated seedlings generally increased with increasing nitrogen (N) uptake, with the exception of the highest N treatment. Seedlings receiving 1500 kg N•ha−1•year−1 were most cold tolerant on most sample dates. In general, these seedlings were hardier than those receiving 300 kg N•ha−1•year−1, which were hardier than unfertilized control seedlings. Seedlings receiving supplemental N also acclimated to cold more rapidly in autumn and deacclimated more slowly in spring than unfertilized controls. Supplemental phosphorus (P) had no influence on cold tolerance, and there was no evidence of a N × P interaction. Significant differences in cold tolerance associated with time of N application (early, mid-, and late summer) were detected in autumn and winter, but not in spring. In general, seedlings receiving N in mid- or late summer were as hardy or hardier than seedlings fertilized in early summer, regardless of the concentration of fertilizer. Significant interactions between N and timing of treatments occurred primarily because N applied in early summer resulted in only a slight increase in cold tolerance, whereas mid- and late summer N application resulted in a substantial increase in cold tolerance. Combined results suggest that it is highly unlikely that either the amount or timing of atmospheric N deposition is responsible for the winter injury frequently observed in red spruce.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 468
Author(s):  
Philip M. Crim ◽  
Jonathan R. Cumming

Anthropogenic emissions have impacted terrestrial forest ecosystem processes in North America since the industrial revolution. With the passage of the Clean Air Act in 1970 in the United States, atmospheric inputs of nitrogen (N) and sulfur (S) into forests in the Appalachian Mountains have declined, which have, potentially, mitigated their effects on processes such as decomposition and nutrient cycling. Activities of microbial extracellular soil enzymes (ESEs) mediate many rate-limiting nutrient transformations in forest soils and play important roles in the decomposition of complex organic compounds. Soils in high-elevation red spruce forests are characterized by low pH and high carbon (C):N ratios and, having historically received extremely high levels of N deposition, may exhibit legacy impacts of deposition on nutrient availability and decomposition. We utilized four sites along a modeled gradient of N deposition in central Appalachia to assess contemporary ESEs in bulk soil under Acer rubrum L., Betula alleghaniensis Britt., and Picea rubens Sarg. in May, June, and July 2016. Increasing N deposition led to increases in organic fraction C and N and decreases in phosphorus (P). Sites receiving higher N also exhibited greater mineral fraction C, N, and P. ESEs were highest in organic fractions with acid phosphatases (AP) exhibiting the highest activity. There was little influence of N deposition on organic fraction ESEs, but strong evidence for a positive relationship between N deposition and activities of AP, β-glucosidases (BG), and chitinase (NAG) in mineral fractions. Species effects on ESEs were present with high AP in organic fractions under spruce and high mineral fraction fungal laccase (LAC) under birch. The sampling season demonstrated little effect on ESEs. ESEs were more strongly influenced by plot-level factors, such as tree species diversity and abundance of ectomycorrhizal (ECM) tree species, than temporal or soil factors or nutrient status related to modeled cumulative N deposition across these sites. Decreases in AP, BG, and NAG activities with greater abundance of broadleaf deciduous species and increases in activities with ECM host abundance indicate that microbial communities driven by these plant functional groups are responsible for the differences in ESEs observed in these high-elevation mixed red spruce stands.


Author(s):  
Alla Varenik ◽  
Alla Varenik ◽  
Sergey Konovalov ◽  
Sergey Konovalov

Atmospheric precipitations can be an important source of nutrients to open and coastal zones of marine ecosystem. Jickells [1] has published that atmospheric depositions can sup-port 5-25% of nitrogen required to primary production. Bulk atmospheric precipitations have been collected in a rural location at the Black Sea Crimean coast – Katsiveli settlement, and an urban location – Sevastopol city. Samples have been analyzed for inorganic fixed nitrogen (IFN) – nitrate, nitrite, and ammonium. Deposi-tions have been calculated at various space and time scales. The monthly volume weighted mean concentration of IFN increases from summer to winter in both locations. A significant local source of IFN has been revealed for the urban location and this source and its spatial influence have been quantified. IFN deposition with atmospheric precipitations is up to 5% of its background content in the upper 10 m layer of water at the north-western shelf of the Black Sea. Considering Redfield C:N ratio (106:16) and the rate of primary production (PP) in coastal areas of the Black Sea of about 100-130 g C m-2 year-1 we have assessed that average atmospheric IFN depositions may intensify primary production by 4.5% for rural locations, but this value is increased many-fold in urban locations due to local IFN sources.


Author(s):  
Alla Varenik ◽  
Alla Varenik ◽  
Sergey Konovalov ◽  
Sergey Konovalov

Atmospheric precipitations can be an important source of nutrients to open and coastal zones of marine ecosystem. Jickells [1] has published that atmospheric depositions can sup-port 5-25% of nitrogen required to primary production. Bulk atmospheric precipitations have been collected in a rural location at the Black Sea Crimean coast – Katsiveli settlement, and an urban location – Sevastopol city. Samples have been analyzed for inorganic fixed nitrogen (IFN) – nitrate, nitrite, and ammonium. Deposi-tions have been calculated at various space and time scales. The monthly volume weighted mean concentration of IFN increases from summer to winter in both locations. A significant local source of IFN has been revealed for the urban location and this source and its spatial influence have been quantified. IFN deposition with atmospheric precipitations is up to 5% of its background content in the upper 10 m layer of water at the north-western shelf of the Black Sea. Considering Redfield C:N ratio (106:16) and the rate of primary production (PP) in coastal areas of the Black Sea of about 100-130 g C m-2 year-1 we have assessed that average atmospheric IFN depositions may intensify primary production by 4.5% for rural locations, but this value is increased many-fold in urban locations due to local IFN sources.


2005 ◽  
Vol 39 (32) ◽  
pp. 5827-5838 ◽  
Author(s):  
Hugo Denier van der Gon ◽  
Albert Bleeker

2012 ◽  
Vol 79 (4) ◽  
pp. 1191-1199 ◽  
Author(s):  
Sarah D. Eisenlord ◽  
Zachary Freedman ◽  
Donald R. Zak ◽  
Kai Xue ◽  
Zhili He ◽  
...  

ABSTRACTFuture rates of anthropogenic N deposition can slow the cycling and enhance the storage of C in forest ecosystems. In a northern hardwood forest ecosystem, experimental N deposition has decreased the extent of forest floor decay, leading to increased soil C storage. To better understand the microbial mechanisms mediating this response, we examined the functional genes derived from communities of actinobacteria and fungi present in the forest floor using GeoChip 4.0, a high-throughput functional-gene microarray. The compositions of functional genes derived from actinobacterial and fungal communities was significantly altered by experimental nitrogen deposition, with more heterogeneity detected in both groups. Experimental N deposition significantly decreased the richness and diversity of genes involved in the depolymerization of starch (∼12%), hemicellulose (∼16%), cellulose (∼16%), chitin (∼15%), and lignin (∼16%). The decrease in richness occurred across all taxonomic groupings detected by the microarray. The compositions of genes encoding oxidoreductases, which plausibly mediate lignin decay, were responsible for much of the observed dissimilarity between actinobacterial communities under ambient and experimental N deposition. This shift in composition and decrease in richness and diversity of genes encoding enzymes that mediate the decay process has occurred in parallel with a reduction in the extent of decay and accumulation of soil organic matter. Our observations indicate that compositional changes in actinobacterial and fungal communities elicited by experimental N deposition have functional implications for the cycling and storage of carbon in forest ecosystems.


Sign in / Sign up

Export Citation Format

Share Document