Automation of the technology of connecting parts in the manufacture of aerospace products

2021 ◽  
pp. 24-32
Author(s):  
S. I. Ponomarev

The paper describes the improvement of the technology of manufacturing parts and components of aerospace production using computer-aided design and technological process control. The theoretical foundations and algorithms for constructing the technological process of manufacturing parts and components of the aerospace industry using various methods of joining heat-resistant materials, for example, by diffusion welding, are designed on the basis of theoretical and experimental studies proposed by the author of the patented connection method «Method for joining a heat-resistant cobalt-based alloy with silicon nitride-based ceramics» and technological equipment «Installation for obtaining metal-ceramic products», as well as «Attribute database for creating technological processes for obtaining parts of aerospace production by diffusion welding» and «Attribute database of technological equipment, tools and devices for mechanical processing of aerospace production parts», registered in the register of databases of the Russian Federation. The research is conducted at the Department of Mechanical Engineering Technology of the Institute of Mechanical Engineering and Mechatronics of the Siberian State University of Science and Technology named after academician M.F. Reshetnev.

Author(s):  
Valentina V. Kuzlyakina ◽  
Marina V. Nagaeva

Laboratory work is an important element in engineering training, which should correspond to up-to-date tendencies in computer-based technologies in design, production, maintenance and preserving mechanisms. Computer-based laboratory work consists of 16 assignments. Seven assignments are carried out on laboratory stands, the remainder are provided on PC, using programs like “Visual Structure Editor”, “DYNAMO”, “APM Win Machine”. The system Visual Structure Editor (VSE) is designed by specialists of “Machine Mechanics and Computer-Aided Design” department, of the Maritime State University named after adm.G.I.NEVELSKOY, Vladivostok, under the direction of prof. Valentina V. Kuzlyakina. The system APM (Automated Projecting of Mechanism) is designed by the research-and-production centre “APM” under the direction of prof.V.Shelofast, from the city of Korolyov, Moscow area. These systems are multifunctional. They allow project different mechanical systems at the stage of structural and parametrical synthesis, carry out strength calculations and design elements of machines and mechanisms. They are good in operation. Teachers and students easily master the systems. Laboratory works with computer support allow students to pass from a concrete object to modeling on a PC, and to solve complex engineering tasks during the education process.


Author(s):  
Irina Sidorkina ◽  
Aleksey Rуbakov

The current stage of development of learning management systems is associated with use of opportunities provided by global computer networks and technological standards developed in distance education. It offers structuring of educational material in electronic course and approach to navigation modeling, which are consistent with international specifications of e-learning SCORM and IMS, adding to them specific adaptive algorithms for navigating through training courses based on use of the model of integral evaluation of student's knowledge. In this chapter professor Irina Sidorkina (Volga State University of Technology) and professor Vardan Mkrttchian (HHH University) using the results previously obtained for the implementation of Computer - Aided Design as Carrier of Set Development Changes System in E-Course Engineering. Dr. Alexey Rybakov (Omega-R Inc.) was a designing a software on the subject of this chapter.


From time to time the Royal Society organizes meetings for the discussion of some new development in engineering and applied science. It seemed possible to the organizers of this meeting that it would be profitable to bring together workers in industry and in the universities to discuss some aspect of computer-aided design. As you will see we have chosen the application of computer aids to mechanical engineering design and manufacture. This restriction to mechanical engineering was deliberate, partly because the application of computer aids to mechanical engineering design is somewhat behind similar activities in electrical and civil engineering. Another reason is that the development of such applications has reached a particularly interesting stage, and it is now perhaps appropriate to review progress and to discuss the directions in which future research should proceed. Although some examples of computer-aided design in mechanical engineering can be found from the earliest days of computing, the development really started in the late fifties with early experiments in the use of graphic displays and with the introduction of multi-access computing. Some may date the beginning of the developments which we are going to discuss today, from the work at M. I. T. on automated programmed drawing started in 1958. This has led to a concentration of effort on graphics and computer-aided drafting. Much research has been done on the mathematical description of curves, surfaces and volumes in a form suitable for engineering design. Work has been done on the automatic dimensioning of drawings, hidden line removal, the prob­lems of lofting, etc.


2013 ◽  
Vol 644 ◽  
pp. 374-377
Author(s):  
Xue Peng Liu ◽  
Dong Mei Zhao

By investigating the characteristics of mold design in mechanical engineering, a framework of computer aided design tool is designed. A standard part library based on Client/Server mode and management tools are designed. The system improves the intelligence by introducing case-based design method


Author(s):  
David Veisz ◽  
Essam Z. Namouz ◽  
Shraddha Joshi ◽  
Joshua D Summers

AbstractThis paper presents a preliminary comparison between the role of computer-aided design (CAD) and sketching in engineering through a case study of a senior design project and interviews with industry and academia. The design team consisted of four senior level mechanical engineering students each with less than 1 year of professional experience are observed while completing an industry sponsored mechanical engineering capstone design project across a 17 week semester. Factors investigated include what CAD tools are used, when in the design process they are implemented, the justification for their use from the students' perspectives, the actual knowledge gained from their use, the impact on the final designed artifact, and the contributions of any sketches generated. At each design step, comparisons are made between CAD and sketching. The students implemented CAD tools at the onset of the project, generally failing to realize gains in design efficiency or effectiveness in the early conceptual phases of the design process. As the design became more concrete, the team was able to recognize clear gains in both efficiency and effectiveness through the use of computer assisted design programs. This study is augmented by interviews with novice and experienced industry users and academic instructors to align the trends observed in the case study with industry practice and educational emphasis. A disconnect in the perceived capability of CAD tools was found between novice and experienced user groups. Opinions on the importance of sketching skills differed between novice educators and novice industry professionals, suggesting that there is a change of opinion as to the importance of sketching formed when recent graduates transition from academia to industry. The results suggest that there is a need to emphasize the importance of sketching and a deeper understanding as to the true utility of CAD tools at each stage of the design process.


Sign in / Sign up

Export Citation Format

Share Document